Benutzer:Jannik WWU-4/Testseite: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
 
(2 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
== Lineare Gleichungssystem zum Lösen von Textaufgaben nutzen ==
==Lineare Gleichungssystem zum Lösen von Textaufgaben nutzen==
{{Box|Aufgabe 1 einfach|Löse das folgende Gleichungssystem:
{{Box|Aufgabe 1 LGS|Löse das folgende Gleichungssystem:


I      <math>3x + 4y = 22</math>
I      <math>3x + 4y = 22</math>
II    <math>5x - 4y = -6</math>
II    <math>5x - 4y = -6</math>


{{Lösung versteckt|1=Du kannst zum Lösen das Additionsverfahren benutzen, um die Variable y zu eliminieren.|2=Tipp 1|3=schließen}}
{{Lösung versteckt|1=Du kannst zum Lösen das Additionsverfahren benutzen, um die Variable y zu eliminieren.|2=Tipp|3=schließen}}
{{Lösung versteckt|1='''x = 2, y = 4'''.|2=Lösung 1|3=schließen}}|Arbeitsmethode
{{Lösung versteckt|1='''x = 2, y = 4'''.|2=Lösung |3=schließen}}|Arbeitsmethode
}}{{Box|Aufgabe 2 LGS|In einer Jugendherberge gibt es 18 Zimmer (Vier- und Sechsbettzimmer). Insgesamt können 84 Jugendliche untergebracht werden. Wie viele Vier- bzw. Sechsbettzimmer gibt es?
 
{{Lösung versteckt|1=Die Lösung kannst du mithilfe eines Gleichungssystems für zwei Variablen (z.B. x und y) berechnen.|2=Tipp 1|3=schließen}}
{{Lösung versteckt|1=Wähle x als "Anzahl der Vierbett-" und y als "Anzahl der Sechsbettzimmer"|2=Tipp 2|3=schließen}}
{{Lösung versteckt|1=In deiner ersten Gleichung sollte das Ergebnis 18, in der zweiten 84 sein.|2=Tipp 3|3=schließen}}
{{Lösung versteckt|1='''Es gibt 12 Vier- und 6 Sechsbettzimmer'''.|2=Lösung |3=schließen}}|Arbeitsmethode
}}{{Box|Aufgabe 2 LGS|Drei Personen werden nach ihrem Vermögen gefragt. Der erste und der zweite besitzen
zusammen um 20 Denare (römische Währung) mehr als der dritte; der erste und der dritte haben zusammen um
40 Denare mehr als der zweite; und der zweite und der dritte haben zusammen um 30
Denare mehr als der erste. Wieviel besitzt jeder der drei? (nach Diophant, 3. Jh. n. Chr.)
 
{{Lösung versteckt|1=Die Lösung kannst du mithilfe eines Gleichungssystems für drei Variablen (z.B. x, y und z) berechnen.|2=Tipp 1|3=schließen}}
{{Lösung versteckt|1=Wenn Peter 10€ mehr hat als Tom, gilt: "Geld von Peter" - "Geld von Tom" = 10€|2=Tipp 2|3=schließen}}
{{Lösung versteckt|1=Wende zur Lösung des Gleichungssystems das Additionsverfahren an.|2=Tipp 3|3=schließen}}
{{Lösung versteckt|1='''Der Erste hat 30, der Zweite 25 und der Dritte 35 Denare'''.|2=Lösung |3=schließen}}|Arbeitsmethode
}}
}}

Aktuelle Version vom 29. April 2019, 10:39 Uhr

Lineare Gleichungssystem zum Lösen von Textaufgaben nutzen

Aufgabe 1 LGS

Löse das folgende Gleichungssystem:

I

II

Du kannst zum Lösen das Additionsverfahren benutzen, um die Variable y zu eliminieren.
x = 2, y = 4.
Aufgabe 2 LGS

In einer Jugendherberge gibt es 18 Zimmer (Vier- und Sechsbettzimmer). Insgesamt können 84 Jugendliche untergebracht werden. Wie viele Vier- bzw. Sechsbettzimmer gibt es?

Die Lösung kannst du mithilfe eines Gleichungssystems für zwei Variablen (z.B. x und y) berechnen.
Wähle x als "Anzahl der Vierbett-" und y als "Anzahl der Sechsbettzimmer"
In deiner ersten Gleichung sollte das Ergebnis 18, in der zweiten 84 sein.
Es gibt 12 Vier- und 6 Sechsbettzimmer.
Aufgabe 2 LGS

Drei Personen werden nach ihrem Vermögen gefragt. Der erste und der zweite besitzen zusammen um 20 Denare (römische Währung) mehr als der dritte; der erste und der dritte haben zusammen um 40 Denare mehr als der zweite; und der zweite und der dritte haben zusammen um 30 Denare mehr als der erste. Wieviel besitzt jeder der drei? (nach Diophant, 3. Jh. n. Chr.)

Die Lösung kannst du mithilfe eines Gleichungssystems für drei Variablen (z.B. x, y und z) berechnen.
Wenn Peter 10€ mehr hat als Tom, gilt: "Geld von Peter" - "Geld von Tom" = 10€
Wende zur Lösung des Gleichungssystems das Additionsverfahren an.
Der Erste hat 30, der Zweite 25 und der Dritte 35 Denare.