Digitale Werkzeuge in der Schule/Pyramiden entdecken/Pyramiden vermessen: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
(85 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
{{Fortsetzung|vorher=zurück zur Kapitelauswahl|vorherlink=Digitale_Werkzeuge_in_der_Schule/Pyramiden_entdecken}}
{{Box
{{Box
|1=Info
|1=Info
Zeile 17: Zeile 13:


==Wiederholung==
==Wiederholung==
{{Box|1=Info|2=Um die Oberfläche einer Pyramide zu bestimmen, ist es wichtig, dass du weißt, wie man den Flächeninhalt von Rechtecken und von Dreiecken bestimmt. Wenn du dich noch daran erinnerst, wie man diesen bestimmt, trage die Formeln direkt auf deinem Arbeitsblatt ein und starte bei "Oberflächeninhalte berechnen". Wenn du dir noch etwas unsicher bist und eine kurze Wiederholung brauchst, bearbeite die folgenden Aufgaben (Aufgaben 1,2,3,4, und 5).|3=Kurzinfo}}
{{Box|1=Info|2=Um die Oberfläche einer Pyramide zu bestimmen, ist es wichtig, dass du weißt, wie man den Flächeninhalt von Rechtecken und von Dreiecken bestimmt. Wenn du dich noch daran erinnerst, wie man diesen bestimmt, kannst du direkt zu Aufgabe 5 gehen. Wenn du dir noch etwas unsicher bist und eine kurze Wiederholung brauchst, bearbeite die folgenden Aufgaben (Aufgaben 1, 2, 3 und 4).|3=Kurzinfo}}


===Rechteckigen Flächeninhalt berechnen===
===Rechteckigen Flächeninhalt berechnen===
{{Box|Aufgabe 1: Flächeninhalt vom Rechteck|Berechne den Flächeninhalt des folgenden Quadrates (denke auch daran, die richtige Einheit anzugeben): {{LearningApp|width=100%|height=500px|app=pzetz093j22}}
{{Box|Aufgabe 1: Flächeninhalt vom Rechteck|Berechne den Flächeninhalt des folgenden Rechtecks (denke auch daran, die richtige Einheit anzugeben): {{LearningApp|width=100%|height=500px|app=pay5n3goj22}}


{{Lösung versteckt|1=Die Formel zur Berechnung eines quadratischen Flächeninhalts lautet: <math>A=a \cdot a</math>|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
{{Lösung versteckt|1=Zur Berechnung des Flächeninhaltes benötigst du nicht die Diagonale.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}


{{Lösung versteckt|1=Flächeninhalte werden in cm² angegeben. Um "²" einzufügen, drücke gleichzeitig die Tasten "Alt Gr" und "2"|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}
{{Lösung versteckt|1=Die Formel zur Berechnung eines rechteckigen Flächeninhaltes lautet: <math>A=a \cdot b</math>|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}


{{Lösung versteckt|1=<math>A=4 \text{ cm} \cdot 4 \text{ cm} =16 \text{ cm²}</math>|2=Lösung anzeigen|3=Lösung verbergen}}
{{Lösung versteckt|1=<math>A=4 \text{ cm} \cdot 3 \text{ cm} =12 \text{ cm}^{2}</math>|2=Lösung anzeigen|3=Lösung verbergen}}
| Arbeitsmethode |Farbe={{Farbe|orange}} }}
| Arbeitsmethode |Farbe={{Farbe|orange}} }}


===Dreieckigen Flächeninhalt berechnen===
===Dreieckigen Flächeninhalt berechnen===
{{Box|Aufgabe 2: Flächeninhalt vom Dreieck|Berechne den Flächeninhalt des folgenden Dreiecks (denke auch daran, die richtige Einheit anzugeben): {{LearningApp|width=100%|height=500px|app=pep157pij22}}
{{Box|Aufgabe 2: Flächeninhalt vom Dreieck|Berechne den Flächeninhalt des folgenden Dreiecks (denke auch daran, die richtige Einheit anzugeben): {{LearningApp|width=100%|height=500px|app=pep157pij22}}


{{Lösung versteckt|1=Die Formel zur Berechnung eines dreieckigen Flächeninhaltes lautet: <math>A=\tfrac{g \cdot h}{2}</math>|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
{{Lösung versteckt|1=Du benötigst zur Berechnung eines dreieckigen Flächeninhaltes die Höhe und die Grundseite. |2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}


{{Lösung versteckt|1=Flächeninhalte werden in cm² angegeben. Um "²" einzufügen, drücke gleichzeitig die Tasten "Alt Gr" und "2"|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}
{{Lösung versteckt|1=Die Formel zur Berechnung eines dreieckigen Flächeninhaltes lautet: <math>A=\tfrac{g \cdot h}{2}</math>|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}


{{Lösung versteckt|1=<math>A= \tfrac{4 \text{ cm} \cdot 6 \text{ cm}}{2} =12 \text{ cm²}</math>|2=Lösung anzeigen|3=Lösung verbergen}}| Arbeitsmethode |Farbe={{Farbe|orange}} }}
{{Lösung versteckt|1=<math>A= \tfrac{4 \text{ cm} \cdot 6 \text{ cm}}{2} =12 \text{ cm}^{2}</math>|2=Lösung anzeigen|3=Lösung verbergen}}| Arbeitsmethode |Farbe={{Farbe|orange}} }}


[[Datei:Grundlagen-bearbeiten.png|30px|middle]] '''Kehre nun zum Arbeitsblatt zurück und trage die Formeln zur Berechnung rechteckiger und dreieckiger Flächeninhalte ein (die vollständigen Formeln stehen jeweils unter "Tipp 1").'''
{{Box|1=Info|2=In den Aufgaben 3 und 4 hast du noch einmal die Möglichkeit, das Bestimmen von recht- und dreieckigen Flächeninhalten zu üben. Solltest du dich schon sicher fühlen, kannst du auch direkt mit Aufgabe 5 weitermachen.|3=Kurzinfo}}


Falls du zu den beiden Themen weitere Aufgaben zur Wiederholung benötigst
{{Box | Aufgabe 3: Rechteckige Flächeninhalte|
{{Lösung versteckt|1=
Berechne den Flächeninhalt folgender Rechtecke.
{{Box | Aufgabe 3: Rechteckige Flächeninhalte berechnen |
 
'''a)''' <math>a=7\text{ m}</math>
'''a)''' <math>a=7\text{ m}, b=5\text{ m}</math>


'''b)''' <math>a=9\text{ dm}</math>
{{Lösung versteckt|1=<math>A=7 \text{ m} \cdot 5 \text{ m} =35 \text{ m}^{2}</math>|2=Lösung a) anzeigen|3=Lösung a) verbergen}}


'''c)''' <math>a=3,5\text{ cm}</math>
'''b)''' <math>a=90\text{ dm}, b=2\text{ m}</math>


{{Lösung versteckt|1=
{{Lösung versteckt|1=Berechnung in m: <math>A=9 \text{ m} \cdot 2 \text{ m} =18 \text{ m}^{2}</math>  
'''a)''' <math>A=49\text{ }</math>


'''b)''' <math>A=81\text{ dm²}</math>
oder


'''c)''' <math>A=12,25\text{ cm²}</math>
Berechnung in dm: <math>A=90 \text{ dm} \cdot 20 \text{ dm} =1800\text{ dm}^{2}</math>|2=Lösung b) anzeigen|3=Lösung b) verbergen}}
|2=Lösung anzeigen|3=Lösung verbergen}}
| Arbeitsmethode|Farbe={{Farbe|orange}}}}
| Arbeitsmethode|Farbe={{Farbe|orange}}}}




{{Box | Aufgabe 4: Dreieckige Flächeninhalte berechnen |
{{Box | Aufgabe 4: Dreieckige Flächeninhalte|
Berechne den Flächeninhalt folgender Dreiecke.


'''a)''' <math>g=8\text{ m}, h=3\text{ m}</math>
'''a)''' <math>g=16\text{ m}, h=7\text{ m}</math>


'''b)''' <math>g=12\text{ cm},  h=4\text{ cm}</math>
{{Lösung versteckt|1=<math>A= \tfrac{16 \text{ m} \cdot 7 \text{ m}}{2} =56 \text{ m}^{2}</math>|2=Lösung a) anzeigen|3=Lösung a) verbergen}}


'''c)''' <math>g=15\text{ dm}, h=12\text{ dm}</math>
'''b)''' <math>g=4\text{ m}, h=500\text{ cm}</math>


{{Lösung versteckt|1=
'''a)''' <math>A=12\text{ m²}</math>


'''b)''' <math>A=24\text{ cm²}</math>
{{Lösung versteckt|1=Berechnung in m: <math>A= \tfrac{4 \text{ m} \cdot 5 \text{ m}}{2} =10 \text{ m}^{2}</math>


'''c)''' <math>A=90\text{ dm²}</math>
oder
|2=Lösung anzeigen|3=Lösung verbergen}}
| Arbeitsmethode|Farbe={{Farbe|orange}}}}


Berechnung in dm: <math> A=\tfrac{40 \text{ dm} \cdot 50 \text{ dm}}{2}=1000\text{ dm}^{2}</math>


{{Box | Aufgabe 5: Dreieckige Flächeninhalte berechnen Teil 2|
oder


'''a)''' <math>g=9\text{ m},  h=3\text{ dm}</math>
Berechnung in cm: <math>A=\tfrac{400 \text{ cm} \cdot 500 \text{ cm}}{2}=100000\text{ cm}^{2}</math>|2=Lösung b) anzeigen|3=Lösung b) verbergen}}


'''b)''' <math>g=10\text{ cm},  h=0,6\text{ m}</math>
| Arbeitsmethode|Farbe={{Farbe|orange}}}}


'''c)''' <math>g=3\text{ m},  h=800\text{ cm}</math>
{{Box|Aufgabe 5: Formeln notieren|Trage die Formeln zur Berechnung rechteckiger und dreieckiger Flächeninhalte ein.


{{Lösung versteckt|1=
[[Datei:Grundlagen-bearbeiten.png|30px|middle]] '''zurück zum Arbeitsblatt'''
'''a)''' <math>A=135\text{ dm²}</math>


'''b)''' <math>A=300\text{ cm² oder }A=30\text{ dm² }</math>
{{Lösung versteckt|
Die Formel zur Berechnung eines rechteckigen Flächeninhaltes lautet: <math>A=a \cdot b</math>


'''c)''' <math>A=12\text{ }</math>
Die Formel zur Berechnung eines dreieckigen Flächeninhaltes lautet: <math>A=\tfrac{g \cdot h}{2}</math>|2=Lösung anzeigen|3=Lösung verbergen}}
|2=Lösung anzeigen|3=Lösung verbergen}}
| Arbeitsmethode |Farbe={{Farbe|orange}} }}
 
| Arbeitsmethode|Farbe=#CD2990}}
 
|2=Klicke Hier|3=verbergen}}


==Oberflächeninhalte berechnen==
==Oberflächeninhalte berechnen==


 
{{Box | 1=Aufgabe 6: Materialien berechnen |
Lies dir eine der folgenden Kurzgeschichten durch und löse anschließend den nachstehenden Arbeitsauftrag.
2='''a)''' Lies dir eine der folgenden Situationsbeschreibungen durch.


<div class="grid">
<div class="grid">
<div class="width-1-3">
<div class="width-1-3">
{{Lösung versteckt|1=
{{Lösung versteckt|1=
[[File:Louvre Museum (228021559).jpeg|500px|rahmenlos|Louvre_Museum_(228021559)]]
[[File:Louvre Museum (228021559).jpeg|500px|rahmenlos|Louvre_Museum_(228021559)]]
Zeile 110: Zeile 97:
|2=Louvre|3=Einklappen}}
|2=Louvre|3=Einklappen}}
</div>
</div>
<div class="width-1-3">
<div class="width-1-3">
{{Lösung versteckt|1=
{{Lösung versteckt|1=
[[File:Kheops-Pyramid.jpg|500px|rahmenlos|Kheops-Pyramid|alt=Kheops-Pyramid.jpg]]
[[File:Kheops-Pyramid.jpg|500px|rahmenlos|Kheops-Pyramid|alt=Kheops-Pyramid.jpg]]
Die Cheops-Pyramide ist die älteste und größte der drei Pyramiden von Gizeh und wird deshalb auch als „Große Pyramide“ bezeichnet. Diese höchste Pyramide der Welt wurde als Grabmal für den Pharao Cheops etwa 2620 v. Chr. errichtet und gilt heutzutage als eines der sieben Weltwunder der Antike. Natürlich mussten ausreichend '''Steine''' gehauen werden, um den Bau zu vollenden. Der zuständige Untertan stand vor der Aufgabe, die passende Anzahl zu berechnen.
Die Cheops-Pyramide ist die älteste und größte der drei Pyramiden von Gizeh und wird deshalb auch als „Große Pyramide“ bezeichnet. Diese höchste Pyramide der Welt wurde als Grabmal für den Pharao Cheops etwa 2620 v. Chr. errichtet und gilt heutzutage als eines der sieben Weltwunder der Antike. Natürlich mussten ausreichend '''Steine''' gehauen werden, um den Bau zu vollenden. Der zuständige Untertan stand vor der Aufgabe, die passende Anzahl zu berechnen.
|2=Pyramiden|3=Einklappen}}
|2=Cheops-Pyramide|3=Einklappen}}
</div>
</div>
<div class="width-1-3">
<div class="width-1-3">
{{Lösung versteckt|1=
{{Lösung versteckt|1=
[[File:Münster, St.-Paulus-Dom -- 2019 -- 3536.jpg|500px|rahmenlos|Münster, St.-Paulus-Dom -- 2019 -- 3536]]
[[File:Münster, St.-Paulus-Dom -- 2019 -- 3536.jpg|500px|rahmenlos|Münster, St.-Paulus-Dom -- 2019 -- 3536]]
Im Zweiten Weltkrieg wurde der St.-Paulus-Dom in Münster durch Bombentreffer schwer beschädigt. In den Jahren 1946 bis 1956 wurde der Dom wieder aufgebaut. Unter anderem mussten die pyramidenförmigen Kirchturmspitzen wieder mit neuen '''Dachziegeln''' belegt werden, doch die Materialien in der Nachkriegszeit waren knapp. Somit soll eine möglichst passende Anzahl berechnet werden.
Im Zweiten Weltkrieg wurde der St.-Paulus-Dom in Münster durch Bombentreffer schwer beschädigt. In den Jahren 1946 bis 1956 wurde der Dom wieder aufgebaut. Unter anderem mussten die pyramidenförmigen Kirchturmdächer wieder mit neuen '''Dachziegeln''' belegt werden, doch die Materialien in der Nachkriegszeit waren knapp. Somit soll eine möglichst passende Anzahl berechnet werden.
|2=Kirchturm|3=Einklappen}}
|2=Kirchturm|3=Einklappen}}
</div> 
</div> 
</div>


</div>  
'''b)''' Überlege dir bei einer der Situationen, wie man das Problem mathematisch lösen könnte. Beschreibe dein Vorgehen auf einem Zettel in Stichpunkten. Hier sind keine Rechnungen erforderlich und du brauchst auch nicht zählen.
 
{{Lösung versteckt|1=
Die Gebäude sind allesamt Pyramiden und haben vier '''gleichgroße, dreieckige''' Seitenflächen. Was benötigst du zum Berechnen einer solchen Seitenfläche? Muss die Grundfläche bei der Materialberechnung berücksichtigt werden?
|2=Tipp|3=Tipp verbergen}}
 
{{Lösung versteckt|1=
Da die Pyramiden auf einem Untergrund stehen, muss die Grundfläche nicht berechnet werden.
 
Da eine Seitenfläche '''dreieckig''' ist, kann man die Formel zur Berechnung eines Dreiecks benutzen:
 
<math> A = \frac{g \cdot h_g}{2} </math>


{{Box | Aufgabe 6: Materialien berechnen |
Da die Seitenflächen '''gleichgroß''' sind, braucht man nur den Materialverbrauch für eine Seitenfläche zu berechnen und vervierfacht diesen.
Überlege dir bei einer der Geschichten, wie man das Problem mathematisch lösen könnte. Schreibe deine Überlegungen auf und stell dir dabei vor, du müsstest deinen Arbeitgeber von deinen Überlegungen überzeugen.


Kannst du dein Vorgehen auch verallgemeinern und auf die anderen Probleme anwenden? Falls dir dies schwerfällt, schau dir genau den nächsten Abschnitt an!
<math> 4 \cdot A = 4 \cdot \frac{g \cdot h_g}{2} = 2 \cdot g \cdot h_g </math>
| Arbeitsmethode|Farbe={{Farbe|orange}}}}


Man benötigt also nur die Maße der Grundseite und der Höhe des Dreiecks, um den Flächeninhalt einer Seitenfläche zu bestimmen. Wenn man nun den Flächeninhalt kennt, den ein Materialstück benötigt, so kann man durch Teilen den Materialverbrauch für eine Seitenfläche berechnen.
|2=Lösung|3=Lösung verbergen}}
| 3=Arbeitsmethode|Farbe={{Farbe|orange}}}}


[[Datei:Pyramide Schrägbild.jpg|rahmenlos|mini|rechts|Schrägbild einer Pyramide mit angegebener Kantenlänge und Seitenhöhe]]
[[Datei:Pyramide Schrägbild.jpg|rahmenlos|mini|rechts|Schrägbild einer Pyramide mit angegebener Kantenlänge und Seitenhöhe]]
Zeile 136: Zeile 136:
[[Datei:Pyramide Gitternetz.jpg|rahmenlos|mini|rechts|Gitternetz einer Pyramide mit angegebener Kantenlänge und Seitenhöhe.]]
[[Datei:Pyramide Gitternetz.jpg|rahmenlos|mini|rechts|Gitternetz einer Pyramide mit angegebener Kantenlänge und Seitenhöhe.]]


Wie du bereits im vorherigen Kapitel entdeckt hast, lässt sich die Oberfläche einer Pyramide in ein Gitternetz überführen, indem man die Pyramide 'aufklappt' und die Seitenflächen auf eine Ebene projiziert.  
Wie du bereits im vorherigen Kapitel entdeckt hast, lässt sich die Oberfläche einer Pyramide in ein Netz überführen, indem man die Pyramide aufklappt und die Seitenflächen auf eine Ebene faltet.  


Das so entstandene Gitternetz besteht somit aus einer '''Grundfläche <math>G</math>''' und den dreieckigen Seitenflächen, welche zusammen die sogenannte '''Mantelfläche <math>M</math>''' bilden.  
Das so entstandene Netz besteht somit aus einer '''Grundfläche <math>G</math>''' und den dreieckigen Seitenflächen, welche zusammen die sogenannte '''Mantelfläche <math>M</math>''' bilden.  


Den Flächeninhalt des gesamten Gitternetzes nennt man den '''Oberflächeninhalt <math>O</math>'''. Du kannst dir diese Größe als '''Menge an Verpackung''' vorstellen, die du benötigst, um das pyramidenförmige Objekt zu umschließen.
Den Flächeninhalt des gesamten Netzes nennt man den '''Oberflächeninhalt <math>O</math>'''. Du kannst dir diese Größe als '''Menge an Verpackung''' vorstellen, die du benötigst, um das pyramidenförmige Objekt zu umschließen.


{{Box | Merksatz: Oberflächeninhalt |  
{{Box | Merksatz: Oberflächeninhalt |  
Der Oberflächeninhalt einer Pyramide lässt sich durch die Summe ihrer Grundfläche und ihrer Mantelfläche berechnen. Als Formel ergibt sich somit:
Der Oberflächeninhalt einer Pyramide lässt sich durch die Summe ihrer Grundfläche und ihrer Mantelfläche berechnen. Als Formel ergibt sich somit:


<math>O = M + G</math>.
<math>O = G + M</math>.


Die Mantelfläche besteht aus mehreren dreieckigen Seitenflächen. Die Anzahl dieser Seitenflächen ist gleich der Anzahl der Ecken der Grundfläche.
Die Mantelfläche besteht aus mehreren dreieckigen Seitenflächen. Die Anzahl dieser Seitenflächen ist gleich der Anzahl der Ecken der Grundfläche.
Zeile 152: Zeile 152:
Im Falle einer quadratischen Pyramide, welche ihre Spitze über der Mitte ihrer Grundfläche hat, ergibt sich für die Grundfläche die Fläche eines Quadrates und für ihre Mantelfläche die Flächeninhalte von vier gleich großen Dreiecken.
Im Falle einer quadratischen Pyramide, welche ihre Spitze über der Mitte ihrer Grundfläche hat, ergibt sich für die Grundfläche die Fläche eines Quadrates und für ihre Mantelfläche die Flächeninhalte von vier gleich großen Dreiecken.


{{Box | Beispiel: Oberflächeninhalt berechnen |  
{{Box | Beispiel: Quadratischen Oberflächeninhalt berechnen |  
Sei wie oben rechts eine Pyramide gegeben, mit einer Kantenlänge von <math>a = 5\text{ cm}</math> und einer Seitenhöhe von <math>h_a = 6\text{ cm}</math>.
Betrachte die Pyramide rechts, mit einer Kantenlänge von <math>a = 5\text{ cm}</math> und einer Seitenhöhe von <math>h_a = 6\text{ cm}</math>.
 
[[Datei:Pyramide Schrägbild mit Angaben.jpg|rahmenlos|500px|rechts|Schrägbild einer Pyramide mit angegebener Kantenlänge und Seitenhöhe]]
 
[[Datei:Pyramide Gitternetz mit Angaben.jpg|rahmenlos|500px|rechts|Gitternetz einer Pyramide mit angegebener Kantenlänge und Seitenhöhe.]]


'''Grundfläche G''':
'''Grundfläche <math>G</math>''':


<math>G = a \cdot a</math>
<math>G = a \cdot a</math>
Zeile 161: Zeile 165:
<math>G = 5 \cdot 5 = 25</math>
<math>G = 5 \cdot 5 = 25</math>


<math>G = 25 \text{ cm²}</math>.
<math>G = 25 \text{ cm}^2</math>.


'''Seitenfläche A''':
'''Seitenfläche <math>A</math>''':


<math>A = \frac{1}{2} \cdot a\cdot h_a</math>
<math>A = \frac{a\cdot h_a}{2} </math>


<math>A = \frac{1}{2} \cdot 5 \cdot 6 = 15</math>
<math>A = \frac{5 \cdot 6}{2} = 15</math>


<math>A = 15\text{ cm²}</math>
<math>A = 15\text{ cm}^2</math>


'''Mantelfläche M''':
'''Mantelfläche <math>M</math>''':


<math>M = 4 \cdot A</math>
<math>M = 4 \cdot A</math>
Zeile 177: Zeile 181:
<math>M = 4 \cdot 15 = 60</math>
<math>M = 4 \cdot 15 = 60</math>


<math>M = 60\text{ cm²}</math>.
<math>M = 60\text{ cm}^2</math>.


'''Oberfläche O''':
'''Oberflächeninhalt <math>O</math>''':


<math>O = G + M</math>
<math>O = G + M</math>
Zeile 185: Zeile 189:
<math>O = 25 + 60 = 85</math>
<math>O = 25 + 60 = 85</math>


<math>O = 85\text{ cm²}</math>
<math>O = 85\text{ cm}^2</math>
  | Hervorhebung1}}
  | Hervorhebung1}}
{{Box|Idee|
Um Aufgabe 6 zu lösen, wäre somit ein geeigneter Ansatz, die Mantelfläche der pyramidenförmigen Gebilde zu berechnen. Anstatt die Materialien einzeln zu zählen, bedarf es demnach nur der Kantenlänge und der Seitenhöhe.
|Unterrichtsidee }}


{{Box | Aufgabe 7: Lückentext 'Rechteckige Pyramide' |  
{{Box | Aufgabe 7: Lückentext 'Rechteckige Pyramide' |  
{{LearningApp|width=100%|height=500px|app=pijmuqx6j22}}
{{LearningApp|width=100%|height=1100px|app=pijmuqx6j22}}


| Arbeitsmethode | Farbe={{Farbe|orange}} }}
| Arbeitsmethode | Farbe={{Farbe|orange}} }}


{{Box | Aufgabe 8: Oberflächeninhalte verschiedener Pyramiden berechnen |  
{{Box | Aufgabe 8: Oberflächeninhalte verschiedener Pyramiden berechnen |  
'''Kehre nun zum Arbeitsblatt zurück und bearbeite die Aufgabe 8 zum Einüben des Verfahrens.''' [[Datei:Grundlagen-bearbeiten.png|30px|middle]]
[[Datei:Grundlagen-bearbeiten.png|30px|middle]] '''zurück zum Arbeitsblatt'''
 
{{Lösung versteckt|1=
 
<div class="grid">
<div class="width-1-4">
'''a)'''
 
'''Grundfläche <math>G</math>''':
 
<math> G = a^2 </math>
 
<math> G = 6^2 = 36 </math>
 
'''Seitenfläche <math>A</math>''':
 
<math> A = \frac{a \cdot h_a}{2} </math>
 
<math> A = \frac{6 \cdot 7}{2} = 21 </math>
 
'''Oberflächeninhalt <math>O</math>''':
 
<math> O = G + 4 \cdot A </math>
 
<math> O = 36 + 4 \cdot 21 = 120 </math>
</div>
<div class="width-1-4">
'''b)'''
 
'''Seitenfläche <math>A_a</math>''':
 
<math> A_a = \frac{a \cdot h_a}{2} </math>
 
<math> A_a = \frac{8 \cdot 6,71}{2} = 26,84 </math>
 
'''Seitenfläche <math>A_b</math>''':
 
<math> A_b = \frac{b \cdot h_b}{2} </math>
 
<math> A_b = \frac{6 \cdot 7,21}{2} = 21,63 </math>
 
'''Mantelfläche <math>M</math>''':
 
<math> M = 2 \cdot A_a + 2 \cdot A_b </math>
 
<math> M = 2 \cdot 26,84 + 2 \cdot 21,63</math>
 
<math> M = 96,94 </math>
</div>
<div class="width-1-4">
'''c)'''
 
'''Grundfläche <math>G</math>''':
 
<math> G = a \cdot b </math>
 
<math> G = 6 \cdot 10 = 60 </math>
 
'''Seitenfläche <math>A_a</math>''':
 
<math> A_a = \frac{a \cdot h_a}{2} </math>
 
<math> A_a = \frac{6 \cdot 8,6}{2} = 25,8 </math>
 
'''Seitenfläche <math>A_b</math>''':
 
<math> A_b = \frac{b \cdot h_b}{2} </math>
 
<math> A_b = \frac{10 \cdot 7,62}{2} = 38,1 </math>
 
'''Mantelfläche <math>M</math>''':
 
<math> M = 2 \cdot A_a + 2 \cdot A_b </math>
 
<math> M = 2 \cdot 25,8 + 2 \cdot 38,1 </math>
 
<math> M = 127,8 </math>
 
'''Oberflächeninhalt <math>O</math>''':
 
<math> O = G + M </math>
 
<math> O = 60 + 127,8 = 187,8 </math>
</div>
<div class="width-1-4">
'''d)'''
 
'''Seitenfläche <math>A</math>''':
 
<math> A = \frac{a \cdot h_a}{2} </math>
 
<math> A = \frac{2 \cdot 4,72}{2} = 4,72 </math>
 
'''Mantelfläche <math>M</math>''':
 
<math> M = 6 \cdot A </math>
 
<math> M = 6 \cdot 4,72 = 28,32 </math>
</div> 
</div>
|2=Lösungen|3=Lösungen verbergen}}
| Arbeitsmethode | Farbe={{Farbe|orange}} }}
| Arbeitsmethode | Farbe={{Farbe|orange}} }}


{{Box | Aufgabe 9: Tetraeder? |  
{{Box | Aufgabe 9: Tetraeder? |  
Azra hat zur Berechnung an einer Pyramide mit dreieckiger Grundfläche sehr viele Größen gemessen, um auf alles vorbereitet zu sein. Allerdings sollte sie nur den Oberflächeninhalt berechnen.
Azra hat zur Berechnung an einer Pyramide mit dreieckiger Grundfläche sehr viele Größen gemessen, um auf alles vorbereitet zu sein. Allerdings sollte sie nur den Oberflächeninhalt berechnen.
[[Datei:About icon (The Noun Project).svg|15px|middle]] Du kannst durch Klicken, Ziehen und Loslassen mit der Maus die Pyramide drehen. Außerdem kannst du auch die Zahlen genauso verschieben, um sie besser lesen zu können.


<ggb_applet id="psnmcrma" width="1000" height="718" />
<ggb_applet id="psnmcrma" width="1000" height="718" />
Zeile 208: Zeile 310:
Kevin erwidert, dass dies ja viel zu viel Arbeit sei, da man doch nur eine der Seitenflächen benötigt. Schnell berechnet er:
Kevin erwidert, dass dies ja viel zu viel Arbeit sei, da man doch nur eine der Seitenflächen benötigt. Schnell berechnet er:


<math>O = G + 3 \cdot A = \frac{1}{2} \cdot 6.4 \cdot 3.12 + \frac{1}{2} \cdot 15.4 \cdot 6 = 56,109</math>.
<math>O = G + 3 \cdot A = \frac{1}{2} \cdot 6,4 \cdot 3,12 + 3 \cdot \frac{1}{2} \cdot 6,4 \cdot 6 = 67,584</math>.
 
Stimmst du diesem Ergebnis zu oder war Kevin doch etwas zu voreilig? Erkläre, welche Fehler Kevin gemacht hat und korrigiere das Ergebnis!
{{Lösung versteckt|1=
 
Tatsächlich unterscheiden sich bei dieser Pyramide die Kantenlängen, da es sich nicht um ein gleichseitiges Dreieck als Grundfläche handelt. Somit sind auch die Seitenflächen nicht deckungsgleich und müssen einzeln berechnet werden. Außerdem hat Kevin die Höhe der Pyramide als Seitenhöhe aufgefasst. Eine korrekte Lösung könnte so aussehen:


Stimmst du diesem Ergebnis zu oder war Kevin doch etwas zu voreilig? Berechne dazu selbst den Oberflächeninhalt und vergleiche dein Ergebnis!
'''Grundfläche G:'''


{{Lösung versteckt|
<math> G = \frac{1}{2} \cdot g \cdot h_g </math>


Tatsächlich unterscheiden sich bei dieser Pyramide die Kantenlängen, da es sich nicht um ein gleichseitiges Dreieck als Grundfläche handelt. Somit sind auch die Seitenflächen nicht deckungsgleich und müssen einzeln berechnet werden.
<math> G = \frac{1}{2} \cdot 6,4 \cdot 3,12 </math>


<math>O = G + M</math>
<math> G = 9,984 </math>


<math>O = G + A_a + A_b + A_c</math>
'''Mantelfläche M:'''


<math>O = G + \frac{1}{2} \cdot a \cdot h_a + \frac{1}{2} \cdot b \cdot h_b + \frac{1}{2} \cdot c \cdot h_c</math>
<math> M = A_a + A_b + A_c</math>


|Tipp|Lösung verbergen}}
<math> M = \frac{1}{2} \cdot a \cdot h_a + \frac{1}{2} \cdot b \cdot h_b + \frac{1}{2} \cdot c \cdot h_c </math>
{{Lösung versteckt|


Der Oberflächeninhalt lautet <math>O = 57,563</math>
<math> M = \frac{1}{2} \cdot 6,4 \cdot 6,09 + \frac{1}{2} \cdot 5 \cdot 6,15 + \frac{1}{2} \cdot 4 \cdot 6,23 </math>


|Lösung|Lösung verbergen}}
<math> M = 19,488 + 15,375 + 12,46</math>


| Arbeitsmethode | Farbe=#CD2990 }}
<math> M = 47,323 </math>


==Pyramiden schätzen==
'''Oberflächeninhalt O:'''


Im Alltag kommt es manchmal vor, dass man nicht alle Angaben kennt, die man zur Bestimmung der Oberfläche benötigt. In diesem Abschnitt kannst du deshalb üben, einzelne Angaben oder auch den gesamten Flächeninhalt zu schätzen. Dabei kommt es nicht so sehr darauf an, dass du immer komplett richtig schätzt (das wäre ja auch so gut wie unmöglich), sondern, dass du ein Gefühl für die Größen entwickelst.
<math>O = G + M</math>


{{Box|Aufgabe 10: Oberfläche von Pyramiden schätzen|Ordne jedem Bild durch Schätzen den passenden Oberflächeninhalt zu (du musst hier nichts rechnen!): {{LearningApp|width=100%|height=500px|app=pnrcnm2fa22}}{{Lösung versteckt|Sortiere die Größen erstmal grob bevor du sie den Bildern zuordnest.|Tipp|Tipp verbergen}}| Arbeitsmethode |Farbe={{Farbe|orange}} }}
<math>O = 9,984 + 47,323</math>


[[File:Luxor Hotel.jpg|rahmenlos|mini|rechts|Schrägbild einer Pyramide mit angegebener Kantenlänge und Seitenhöhe]]
<math>O = 57,307</math>
{{Box | Aufgabe 11: Oberfläche berechnen mit unbekanntem Parameter|Auf dem Bild rechts siehst du das Luxor Hotel und Casino. Es steht in Las Vegas und zeichnet sich vor allem durch seine Pyramidenform aus. Die Außenfassade besteht fast vollständig aus Glas und muss natürlich regelmäßig geputzt werden. Dafür soll eine neue Reinigungsfirma engagiert werden. Diese möchte aber vorab wissen, wie viele Quadratmeter circa zu putzen sind. Du weißt, dass das Gebäude <math>107 \text{ m} </math> hoch ist und <math> 106,7 \text{ m}</math> breit.
|2=Lösung|3=Lösung verbergen}}
| Arbeitsmethode | Farbe=#CD2990 }}


'''a)''' Welche Angabe, die du zur genauen Berechnung der zu reinigenden Fläche benötigst, fehlt?
==Pyramiden schätzen==


{{Lösung versteckt|Achte genau darauf, welche Höhe gegeben ist und welche Höhe du zur Berechnung der Seitenflächen benötigst.|Tipp|Tipp verbergen}}
{{Box
|1=Info
|2=Im Alltag kommt es manchmal vor, dass man nicht alle Angaben kennt, die man zur Bestimmung der Oberfläche benötigt. In diesem Abschnitt kannst du deshalb üben, einzelne Angaben oder auch den gesamten Flächeninhalt zu schätzen. Dabei kommt es nicht so sehr darauf an, dass du immer komplett richtig schätzt (das wäre ja auch so gut wie unmöglich), sondern, dass du ein Gefühl für die Größen entwickelst.  
|3=Kurzinfo}}


{{Lösung versteckt|Es fehlt die Höhe <math>h_a</math> der dreieckigen Seitenflächen.|Lösung zu a)|Lösung zu a) verbergen}}
{{Box|Aufgabe 10: Oberfläche von Pyramiden schätzen|Ordne jedem Bild durch Schätzen den passenden Oberflächeninhalt zu (du musst hier nichts rechnen!). Am Ende bleiben einige Werte übrig, da es mehr Werte als Bilder gibt.


'''b)''' Berechne die Größe der zu reinigenden Fläche, indem du die fehlende Angabe schätzt.  
[[Datei:About icon (The Noun Project).svg|15px|middle]] Durch Anklicken der Bilder werden diese größer.
{{LearningApp|width=100%|height=500px|app=pnrcnm2fa22}}


| Arbeitsmethode |Farbe=#CD2990}}
{{Lösung versteckt|Sortiere die Größen erstmal grob bevor du sie den Bildern zuordnest.|Tipp|Tipp verbergen}}| Arbeitsmethode |Farbe={{Farbe|orange}} }}


<div style="background:#FFFACD; border:ridge #FFEC8B; padding:10px">Das Luxor Hotel und Casino spielte auch schon in Aufgabe 10 eine Rolle. Vergleiche dein Ergebnis mit der Lösung aus Aufgabe 10, um zu sehen, ob du gut geschätzt hast.</div>
{{Box|Aufgabe 11: Karlsruher Pyramide schätzen|[[Datei:Pyramide am Marktplatz, Karlsruhe.JPG|mini|Karlsruher Pyramide]]
Auf dem Bild siehst du die Karlsruher Pyramide, die auf dem Marktplatz in Karlsruhe steht. Berechne den Oberflächeninhalt der Pyramide (inklusive der Grundfläche), indem du zuvor die für die Berechnung notwendigen Größen schätzt.


{{Box|Aufgabe 12|[[Datei:Grundlagen-bearbeiten.png|30px|middle]] '''Kehre nun zum Arbeitsblatt zurück und bearbeite die Aufgabe 12.'''| Arbeitsmethode|Farbe=#CD2990}}
{{Box
|1=Info
|2=Die Grundfläche der Pyramide kann als quadratisch angenommen werden.
|3=Kurzinfo}}


{{Lösung versteckt|Nutze die Personen auf dem Bild als Referenzgröße.|Tipp|Tipp verbergen}}


{{Box|Aufgabe 13: Oberfläche vom Louvre schätzen| Unter folgendem Link [[https://earth.google.com/web/search/Louvre+Museum,+Rue+de+Rivoli,+Paris,+Frankreich/@48.8612011,2.3351092,35.61127028a,0d,42.17374804y,92.43745982h,92.97739933t,0r/data=CpoBGnASagolMHg0N2U2NzFkODc3OTM3YjBmOjB4Yjk3NWZjZmExOTJmODRkNBmMiSiBKG5IQCFmho2yfrMCQCovTG91dnJlIE11c2V1bSwgUnVlIGRlIFJpdm9saSwgUGFyaXMsIEZyYW5rcmVpY2gYASABIiYKJAmX5Fa7ud9BQBH_SO7pOvsqwBnZ_W65YvVgQCH4KwUk7Gg2QCIwCixBRjFRaXBNXzBvUHFRQ19ZWmNjeXBTOFk1ckt6ZnpUMFBvczhTUGxycWJ2WhAF]] findest du eine Streetview-Ansicht vom Louvre. Bestimme nun den Oberflächeninhalt der Glasfläche, indem du die benötigten Parameter vorerst schätzt.{{Lösung versteckt|Denke zurück an dein Vorgehen aus Aufgabe 6.|Tipp 1|Tipp 1 verbergen}}{{Lösung versteckt|Nutze Personen als Referenzgröße.|Tipp 2|Tipp 2 verbergen}} | Arbeitsmethode |Farbe=purple}}
{{Lösung versteckt|
<div style="background:#FFFACD; border:ridge #FFEC8B; padding:10px">Ob du gut geschätzt hast, siehst du im Kapitel 4 "Pyramiden verknüpfen".</div>
{{Box
|1=Info
|2=In der Lösung werden die exakten Werte genutzt, deine Ergebnisse können also etwas von dieser Lösung abweichen. Die Lösung kann dir aber als Orientierung dienen.
|3=Kurzinfo}}


==Vertiefen und Vernetzen==
Es gilt <math>h_a=7{,}45 \text{ m} </math> und <math>a=6{,}05 \text{ m.} </math>
In diesem Abschnitt findest du vertiefende Aufgaben zu dem Oberflächeninhalt von Pyramiden und darüber hinausgehenden Themen. Neben Pyramiden kommen in diesem Abschnitt auch weitere Körper bzw. Flächen vor, die du zum Teil bereits aus dem Unterricht kennst. Die Aufgaben sind als Knobelaufgaben gedacht, sodass du hier testen kannst, wie fit du im Umgang mit den Oberflächeninhalten von Pyramiden und ähnlichen Körpern bist.


Damit gilt dann: 


{{Box|'''Aufgabe 14: Zusammengesetzte Körper'''|
'''Grundfläche G:'''
Die 23 Schülerinnen und Schüler einer fünften Klasse sollen vor Weihnachten in der Schule eigene Nikolaushäuschen bauen, die einen quaderförmigen Körper mit einem Walmdach haben sollen. Ein Modell dieses Häuschens siehst du in dem GeoGebra-Applet abgebildet.


<ggb_applet id="x8bpkmyr" width="1000" height="714" border="888888" />
<math>G=a^{2}=6{,}05^{2}</math>


Folgende Daten soll das Häuschen haben: <math>a=6 \text{ cm}, b=1,2 \text{ dm}, c=0,5 \text{ dm}, d=6 \text{ cm}, h_a=5 \text{ cm}, h_b=5 \text{ cm}</math>.
<math>G=36{,}6 \text{ m}^{2}</math>


Berechne, wie viel Pappe die Lehrkraft mitbringen muss, wenn alle Schülerinnen und Schüler der Klasse ein Häuschen bauen sollen.
'''Seitenfläche A:'''


{{Lösung versteckt|Die Dachfläche besteht aus zwei gleich großen Trapezen und zwei gleich großen Dreiecken.|Tipp 1|Tipp verbergen}}
<math>A=\frac{a\cdot h_a}{2}=\frac{6{,}05\cdot 7{,}45}{2} </math>
{{Lösung versteckt|Die Formel für den Flächeninhalt dieser Trapeze lautet: <math>A=\frac{b+d}{2} \cdot h_b</math>|Tipp 2|Tipp verbergen}}
{{Lösung versteckt|Wir berechnen als erstes den Oberflächeninhalt des Quaders. Die Grundfläche berechnet sich aus


<math>G=a \cdot b=6 \cdot 12=72 \text{ cm²}</math>.
<math>A=22{,}54 \text{ m}^{2} </math>


Als nächstes wird die Mantelfläche des Quaders berechnet.
'''Mantelfläche M:'''


<math>M_{Quader}=2 \cdot a \cdot c+2 \cdot b \cdot c=2 \cdot 6 \cdot 5+2 \cdot 12 \cdot 5=60+120=180 \text{ cm²}</math>
<math>M = 4 \cdot A = 4\cdot 22{,}54</math>


Nun berechnen wir die Mantelfläche des Walmdaches. Zunächst berechnen wir die Fläche des Dreiecks:
<math>M = 90{,}16 \text{ m}^{2} </math>


<math>A_{Dreick}=\frac{1}{2} \cdot a \cdot h_a=\frac{1}{2} \cdot 6 \cdot 5=15 \text{ cm²}</math>.
'''Oberfläche O:'''


Nun fehlt noch die Fläche des Trapezes:
<math>O = G + M = 36{,}6 + 90{,}16 </math>


<math>A_{Trapez}=\frac{b+d}{2} \cdot h_b=\frac{12+6}{2} \cdot 5=45 \text{ cm²}</math>.
<math>O = 126{,}76 \text{ m}^{2}</math>


Wir erhalten insgesamt für die Mantelfläche des Walmdaches:
|Lösung|Lösung verbergen}}


<math>M_{Walmdach}=2 \cdot A_{Dreick}+2 \cdot A_{Trapez}=2 \cdot 15+2 \cdot 45=30+90=120 \text{ cm²}</math>.
|Arbeitsmethode |Farbe=#CD2990}}


Insgesamt erhalten wir also: <math>O=G+M_{Quader}+M_{Walmdach}=72+180+120=372 \text{ cm²}</math>.
==Vertiefen und Vernetzen==
{{Box|Info|In diesem Abschnitt findest du vertiefende Aufgaben zu dem Oberflächeninhalt von Pyramiden und darüber hinausgehenden Themen. Neben Pyramiden kommen in diesem Abschnitt auch weitere Körper bzw. Flächen vor, die du zum Teil bereits aus dem Unterricht kennst. Die Aufgabe 13 ist als Knobelaufgabe gedacht, sodass du hier testen kannst, wie fit du im Umgang mit den Oberflächeninhalten von Pyramiden und ähnlichen Körpern bist.|Kurzinfo}}


Für 23 Schülerinnen und Schüler muss die Lehrkraft also <math>23 \cdot 372=8556 \text{ cm²}</math> Papier mitbringen.|Lösung anzeigen|Lösung verbergen}}
|Arbeitsmethode|Farbe=#CD2990}}


{{Box|'''Aufgabe 15: Pyramidenstumpf'''|[[File:Upside down Pyramid, Bratislava 02.jpg|rechts|mini|Slovak Radio Building]]
{{Box|Aufgabe 12: Nikolaus-Häuschen|
Das Slovak Radio Building in Bratislava (Slowakei) hat die Form eines umgedrehten quadratischen Pyramidenstumpfes. Das Gebäude soll eine neue Glasfassade sowie ein neues Glasdach erhalten, die aus Sicherheitsglas bestehen sollen. Das Gebäude ist an der unteren Kante <math>22,59 \text{ m}</math> breit, an der oberen Kante <math>74,33 \text{ m}</math> breit und ist <math>42,7 \text{ m}</math> hoch. Die Seitenhöhe der Fassade beträgt <math>49,7 \text{ m} </math>.
[[Datei:Grundlagen-bearbeiten.png|30px|middle]] '''zurück zum Arbeitsblatt'''


a) Berechne, wie viel Quadratmeter des Sicherheitsglases für die neue Fassade und das Dach benötigt werden. Runde auf zwei Stellen nach dem Komma.
{{Lösung versteckt|Die Dachfläche besteht aus vier Dreiecken, von denen die jeweils gegenüberliegenden gleich groß sind.|Tipp|Tipp verbergen}}
{{Lösung versteckt|Die Seitenflächen des Gebäudes sind trapezförmig.|Tipp 1|Tipp verbergen}}
{{Lösung versteckt|Wir berechnen als erstes den Oberflächeninhalt des Quaders. Die Grundfläche berechnet sich aus
{{Lösung versteckt|Die Formel für die Berechnung des Flächeninhaltes eines Trapezes lautet: <math>A=\frac{a+c}{2} \cdot h</math>|Tipp 2|Tipp verbergen}}
{{Lösung versteckt|Wir berechnen die Lösung nach der oben aufgestellten Formel:
<math>O=M+G.</math>


Die Mantelfläche besteht hier aus vier identischen Trapezen, mit den Kantenlängen <math>a=74,33\text{ m}, c=22,59\text{ m}</math> und der Höhe <math>h_a=49,7\text{ m}</math>. Es gilt somit für eine Seitenfläche:
<math>G=a \cdot b=6 \cdot 12=72 \text{ cm}^{2}</math>.


<math>A_{Trapez}=\frac{a+c}{2} \cdot h_a=\frac{74,33+22,59}{2} \cdot 49,7=2408,462 \text{ m²} \approx 2408,46 \text{ m²}</math>.  
Als nächstes wird die Mantelfläche des Quaders berechnet.


Für die Mantelfläche folgt dann:
<math>M_{\text{Quader}}=2 \cdot a \cdot c+2 \cdot b \cdot c=2 \cdot 6 \cdot 5+2 \cdot 12 \cdot 5=60+120=180 \text{ cm}^{2}</math>
<math>M=4 \cdot A_{Trapez}=4 \cdot 2408,46=9633,84 \text{ }</math>.


Die Grundfläche ist in diesem Fall das Dach des Gebäudes, welches ebenfalls aus Glas bestehen soll:
Nun berechnen wir die Mantelfläche des Daches. Zunächst berechnen wir die Fläche eines der ersten beiden Dreiecke:


<math>G=a^2=74,33 \cdot 74,33=5524,9489 \text{ } \approx 5524,95 \text{ }</math>
<math>A_{\text{Dreieck-1}}= \frac{1}{2} \cdot a \cdot h_a=\frac{1}{2} \cdot 6 \cdot 8{,}37=25{,}11 \text{ cm}^{2}</math>.


Zusammen gilt dann: <math>O=M+G=9633,84+5524,95=15158,79 \text{ m²}</math>
Nun fehlt noch die Fläche eines der zweiten beiden Dreiecke:


Es werden insgesamt <math>15158,79 \text{ }</math> Sicherheitsglas benötigt.|Lösung zu a) anzeigen|Lösung verbergen}}
<math>A_{\text{Dreieck-2}}= \frac{1}{2} \cdot h \cdot h_b=\frac{1}{2} \cdot 12 \cdot 5{,}83=34,98 \text{ cm}^{2}</math>.


b) Das Sicherheitsglas kostet im Handel ungefähr <math>75 \text{ €/m²}</math>. Bei der Montage der Fassade werden immer einige Glasplatten beschädigt, sodass 2% mehr Glas gekauft wird, als eigentlich für die Fassade benötigt wird. Berechne, wie hoch die Materialkosten sind, die für die neue Fassade entstehen.
Wir erhalten insgesamt für die Mantelfläche des pyramidenförmigen Daches:


{{Lösung versteckt|Wir berechnen zunächst die zu bestellende Glasmenge:
<math>M_{\text{Dach}}=2 \cdot A_{\text{Dreieck-1}}+2 \cdot A_{\text{Dreieck-2}}=2 \cdot 25{,}11+2 \cdot 34{,}98=50{,}22+69{,}96=120{,}18 \text{ cm}^{2}</math>.
<math>15158,79 \cdot 1,02=15461,9658 \text{ } \approx 15461,97 \text{ }</math>


Nun folgt für den Materialpreis: <math>15461,97 \cdot 75=1159647,75 \text{ }</math>
Insgesamt erhalten wir also: <math>O=G+M_{\text{Quader}}+M_{\text{Dach}}=72+180+120{,}18=372{,}18 \text{ cm}^{2}</math>.


Das Material für die neue Fassade kostet insgesamt <math>1159647,75 \text{ }</math>|Lösung zu b) anzeigen|Lösung verbergen}}
Für 23 Schülerinnen und Schüler muss die Lehrkraft also <math>23 \cdot 372{,}18=8560{,}14 \text{ cm}^{2}</math> Papier mitbringen.|Lösung|Lösung verbergen}}
|Arbeitsmethode|Farbe=purple}}
|Arbeitsmethode|Farbe=#CD2990}}




{{Box|'''Aufgabe 16: Tipi'''|
{{Box|Aufgabe 13: Tipi|
  [[Datei:Teepee and Clifford King (14059271679).jpg|mini|alternativtext=|Tipi]]
  [[Datei:Teepee and Clifford King (14059271679).jpg|mini|alternativtext=|Tipi]]


Für ein Tipi-Modell soll eine Plane hergestellt werden. Das Tipi ist in der Abbildung rechts maßstabsgetreu abgebildet. Zur Vereinfachung kannst du annehmen, dass das Tipi die Form einer regelmäßigen achteckigen Pyramide hat, die an einer der Seitenflächen eine halbrunden Öffnung enthält. Der Boden des Tipis wird nicht mit einer Plane ausgekleidet.
Für das Tipi auf dem Foto soll eine Plane hergestellt werden. Zur Vereinfachung kannst du annehmen, dass das Tipi die Form einer regelmäßigen neuneckigen Pyramide hat, die an einer der Seitenflächen eine halbrunden Öffnung enthält. Der Boden des Tipis wird nicht mit einer Plane ausgekleidet.


Berechne, wie viel Quadratmeter Zeltplane für ein Tipi benötigt wird.
Berechne, wie viel Quadratmeter Zeltplane für das Tipi benötigt wird.
{{Lösung versteckt|Schätze die benötigten Größen zur Berechnung der Fläche, indem du den abgebildeten Menschen als Referenzgröße verwendest.|Tipp 1|Tipp verbergen}}
{{Lösung versteckt|Schätze die benötigten Größen zur Berechnung der Fläche, indem du den abgebildeten Menschen als Referenzgröße verwendest.|Tipp 1|Tipp verbergen}}
{{Lösung versteckt|Der gesuchte Flächeninhalt berechnet sich aus der Mantelfläche abzüglich des halbrunden Eingangs.|Tipp 2|Tipp verbergen}}
{{Lösung versteckt|Der gesuchte Flächeninhalt berechnet sich aus der Mantelfläche abzüglich des halbrunden Eingangs.|Tipp 2|Tipp verbergen}}
{{Lösung versteckt|Bei dem Eingang handelt es sich um einen Halbkreis. Der Flächeninhalt dieses Halbkreises lässt sich mit der Formel <math>A=\frac{1}{2} \cdot \pi \cdot r^2</math> berechnen.|Tipp 3|Tipp verbergen}}
{{Lösung versteckt|Bei dem Eingang handelt es sich um einen Halbkreis. Der Flächeninhalt dieses Halbkreises lässt sich mit der Formel <math>A=\frac{1}{2} \cdot \pi \cdot r^2</math> berechnen.|Tipp 3|Tipp verbergen}}
{{Lösung versteckt|Wir berechnen zunächst die Mantelfläche der achteckigen Pyramide. Dazu müssen wir zunächst die fehlenden Daten schätzen. Wir nehmen an, dass der Mensch ungefähr <math>1,70 \text{ m}</math> groß ist. Wir schätzen daher, dass die Seitenhöhe des Tipis ungefähr <math>4,1 \text{ m}</math> beträgt (da wir die Gesamthöhe auf ungefähr <math>3,8 \text{ m}</math> geschätzt haben). Die Breite einer Grundkante schätzen wir auf ungefähr <math>1,3 \text{ m}</math> (da wir den Durchmesser des Achtecks auf <math>3,5 \text{ m}</math> geschätzt haben). Wir berechnen zunächst den Flächeninhalt einer einzelnen Seitenfläche (also eines Dreiecks) der achteckigen Pyramide:
{{Lösung versteckt|Wir berechnen zunächst die Mantelfläche der neuneckigen Pyramide. Dazu müssen wir zunächst die fehlenden Daten schätzen. Wir nehmen an, dass der Mensch ungefähr <math>1{,}70 \text{ m}</math> groß ist. Wir schätzen daher mit dem Augenmaß, dass die Seitenhöhe des Tipis ungefähr <math>4{,}1 \text{ m}</math> beträgt. Die Breite einer Grundkante schätzen wir auf ungefähr <math>1{,}3 \text{ m}</math>. Wir berechnen zunächst den Flächeninhalt einer einzelnen Seitenfläche (also eines Dreiecks) der neuneckigen Pyramide:


<math>A_{Dreieck}=\frac{1}{2} \cdot 1,3 \cdot 4,1=2,665 \text{ } \approx 2,67 \text{ }</math>
<math>A_{\text{Dreieck}}=\frac{1}{2} \cdot 1{,}3 \cdot 4{,}1=2{,}665 \text{ m}^{2} \approx 2{,}67 \text{ m}^{2}</math>


Als nächstes berechnen wir den Mantelflächeninhalt der Pyramide:
Als nächstes berechnen wir den Mantelflächeninhalt der Pyramide:
<math>M=8 \cdot A_{Dreieck}=8 \cdot 2,67=21,36 \text{ }</math>
<math>M=9 \cdot A_{\text{Dreieck}}=9 \cdot 2{,}67=24{,}03 \text{ m}^{2}</math>


Wir schätzen den Durchmesser des Halbkreises auf <math>1,5 \text{ m}</math>.
Wir schätzen den Durchmesser des Halbkreises auf <math>1{,}3 \text{ m}</math>, da der Eingang ungefähr die Breite der Grundseite hat.
Nun berechnen wir den Flächeninhalt des Halbkreises und ziehen diesen dann von der Mantelfläche ab:
Nun berechnen wir den Flächeninhalt des Halbkreises und ziehen diesen dann von der Mantelfläche ab:


<math>A_{Kreis}=\frac{1}{2} \cdot 0,75^2 \cdot \pi \approx 0,88 \text{ }
<math>A_{\text{Halbkreis}}=\frac{1}{2} \cdot 0{,}65^2 \cdot \pi \approx 0{,}66 \text{ m}^{2}
\Rightarrow A_{gesucht}=21,36-0,88=20,48 \text{ }</math>
\Rightarrow A_{\text{gesucht}}=24{,}03-0{,}66=23{,}37 \text{ m}^{2}</math>
Für ein Tipi werden ungefähr <math>20,48 \text{ }</math> Zeltplane benötigt.|Lösung anzeigen|Lösung verbergen}}
Für das Tipi werden ungefähr <math>23{,}37 \text{ m}^{2}</math> Zeltplane benötigt.|Lösung|Lösung verbergen}}


|Arbeitsmethode|Farbe=purple}}
|Arbeitsmethode|Farbe=purple}}

Aktuelle Version vom 1. Dezember 2022, 07:53 Uhr

Info

In diesem Lernpfadkapitel lernst du

  • wie du von Pyramiden den Oberflächeninhalt schätzen kannst.
  • wie du von Pyramiden den Oberflächeninhalt berechnen kannst.

Bei den Aufgaben unterscheiden wir folgende Typen:

  • In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
  • Aufgaben in pinker Farbe sind Aufgaben mittlerer Schwierigkeit.
  • Und Aufgaben mit lilanem Streifen sind Knobelaufgaben.
Viel Erfolg!

Wiederholung

Info
Um die Oberfläche einer Pyramide zu bestimmen, ist es wichtig, dass du weißt, wie man den Flächeninhalt von Rechtecken und von Dreiecken bestimmt. Wenn du dich noch daran erinnerst, wie man diesen bestimmt, kannst du direkt zu Aufgabe 5 gehen. Wenn du dir noch etwas unsicher bist und eine kurze Wiederholung brauchst, bearbeite die folgenden Aufgaben (Aufgaben 1, 2, 3 und 4).

Rechteckigen Flächeninhalt berechnen

Aufgabe 1: Flächeninhalt vom Rechteck

Berechne den Flächeninhalt des folgenden Rechtecks (denke auch daran, die richtige Einheit anzugeben):


Zur Berechnung des Flächeninhaltes benötigst du nicht die Diagonale.
Die Formel zur Berechnung eines rechteckigen Flächeninhaltes lautet:

Dreieckigen Flächeninhalt berechnen

Aufgabe 2: Flächeninhalt vom Dreieck

Berechne den Flächeninhalt des folgenden Dreiecks (denke auch daran, die richtige Einheit anzugeben):


Du benötigst zur Berechnung eines dreieckigen Flächeninhaltes die Höhe und die Grundseite.
Die Formel zur Berechnung eines dreieckigen Flächeninhaltes lautet:


Info
In den Aufgaben 3 und 4 hast du noch einmal die Möglichkeit, das Bestimmen von recht- und dreieckigen Flächeninhalten zu üben. Solltest du dich schon sicher fühlen, kannst du auch direkt mit Aufgabe 5 weitermachen.


Aufgabe 3: Rechteckige Flächeninhalte

Berechne den Flächeninhalt folgender Rechtecke.

a)

b)

Berechnung in m:

oder

Berechnung in dm:


Aufgabe 4: Dreieckige Flächeninhalte

Berechne den Flächeninhalt folgender Dreiecke.

a)

b)


Berechnung in m:

oder

Berechnung in dm:

oder

Berechnung in cm:


Aufgabe 5: Formeln notieren

Trage die Formeln zur Berechnung rechteckiger und dreieckiger Flächeninhalte ein.

Grundlagen-bearbeiten.png zurück zum Arbeitsblatt

Die Formel zur Berechnung eines rechteckigen Flächeninhaltes lautet:

Die Formel zur Berechnung eines dreieckigen Flächeninhaltes lautet:

Oberflächeninhalte berechnen

Aufgabe 6: Materialien berechnen

a) Lies dir eine der folgenden Situationsbeschreibungen durch.

Louvre_Museum_(228021559)

1981 initiierte der damalige französische Staatspräsident das Projekt „Grand-Louvre“. Im Rahmen dessen wurde der Architekt Ieoh Ming Pei beauftragt, die heutige Glaspyramide im Zentrum des Palastes zu entwickeln. Die Blaupause steht und die Vision ist klar: Die Pyramide soll komplett mit Glas umfasst werden! Nun geht es darum zu ermitteln, wie viele der rautenförmigen Glasscheiben hergestellt werden müssen.

Kheops-Pyramid.jpg

Die Cheops-Pyramide ist die älteste und größte der drei Pyramiden von Gizeh und wird deshalb auch als „Große Pyramide“ bezeichnet. Diese höchste Pyramide der Welt wurde als Grabmal für den Pharao Cheops etwa 2620 v. Chr. errichtet und gilt heutzutage als eines der sieben Weltwunder der Antike. Natürlich mussten ausreichend Steine gehauen werden, um den Bau zu vollenden. Der zuständige Untertan stand vor der Aufgabe, die passende Anzahl zu berechnen.

Münster, St.-Paulus-Dom -- 2019 -- 3536

Im Zweiten Weltkrieg wurde der St.-Paulus-Dom in Münster durch Bombentreffer schwer beschädigt. In den Jahren 1946 bis 1956 wurde der Dom wieder aufgebaut. Unter anderem mussten die pyramidenförmigen Kirchturmdächer wieder mit neuen Dachziegeln belegt werden, doch die Materialien in der Nachkriegszeit waren knapp. Somit soll eine möglichst passende Anzahl berechnet werden.
 

b) Überlege dir bei einer der Situationen, wie man das Problem mathematisch lösen könnte. Beschreibe dein Vorgehen auf einem Zettel in Stichpunkten. Hier sind keine Rechnungen erforderlich und du brauchst auch nicht zählen.

Die Gebäude sind allesamt Pyramiden und haben vier gleichgroße, dreieckige Seitenflächen. Was benötigst du zum Berechnen einer solchen Seitenfläche? Muss die Grundfläche bei der Materialberechnung berücksichtigt werden?

Da die Pyramiden auf einem Untergrund stehen, muss die Grundfläche nicht berechnet werden.

Da eine Seitenfläche dreieckig ist, kann man die Formel zur Berechnung eines Dreiecks benutzen:

Da die Seitenflächen gleichgroß sind, braucht man nur den Materialverbrauch für eine Seitenfläche zu berechnen und vervierfacht diesen.

Man benötigt also nur die Maße der Grundseite und der Höhe des Dreiecks, um den Flächeninhalt einer Seitenfläche zu bestimmen. Wenn man nun den Flächeninhalt kennt, den ein Materialstück benötigt, so kann man durch Teilen den Materialverbrauch für eine Seitenfläche berechnen.
Schrägbild einer Pyramide mit angegebener Kantenlänge und Seitenhöhe
Gitternetz einer Pyramide mit angegebener Kantenlänge und Seitenhöhe.

Wie du bereits im vorherigen Kapitel entdeckt hast, lässt sich die Oberfläche einer Pyramide in ein Netz überführen, indem man die Pyramide aufklappt und die Seitenflächen auf eine Ebene faltet.

Das so entstandene Netz besteht somit aus einer Grundfläche und den dreieckigen Seitenflächen, welche zusammen die sogenannte Mantelfläche bilden.

Den Flächeninhalt des gesamten Netzes nennt man den Oberflächeninhalt . Du kannst dir diese Größe als Menge an Verpackung vorstellen, die du benötigst, um das pyramidenförmige Objekt zu umschließen.


Merksatz: Oberflächeninhalt

Der Oberflächeninhalt einer Pyramide lässt sich durch die Summe ihrer Grundfläche und ihrer Mantelfläche berechnen. Als Formel ergibt sich somit:

.

Die Mantelfläche besteht aus mehreren dreieckigen Seitenflächen. Die Anzahl dieser Seitenflächen ist gleich der Anzahl der Ecken der Grundfläche.

Im Falle einer quadratischen Pyramide, welche ihre Spitze über der Mitte ihrer Grundfläche hat, ergibt sich für die Grundfläche die Fläche eines Quadrates und für ihre Mantelfläche die Flächeninhalte von vier gleich großen Dreiecken.


Beispiel: Quadratischen Oberflächeninhalt berechnen

Betrachte die Pyramide rechts, mit einer Kantenlänge von und einer Seitenhöhe von .

Schrägbild einer Pyramide mit angegebener Kantenlänge und Seitenhöhe
Gitternetz einer Pyramide mit angegebener Kantenlänge und Seitenhöhe.

Grundfläche :

.

Seitenfläche :

Mantelfläche :

.

Oberflächeninhalt :


Aufgabe 7: Lückentext 'Rechteckige Pyramide'




Aufgabe 8: Oberflächeninhalte verschiedener Pyramiden berechnen

Grundlagen-bearbeiten.png zurück zum Arbeitsblatt

a)

Grundfläche :

Seitenfläche :

Oberflächeninhalt :

b)

Seitenfläche :

Seitenfläche :

Mantelfläche :

c)

Grundfläche :

Seitenfläche :

Seitenfläche :

Mantelfläche :

Oberflächeninhalt :

d)

Seitenfläche :

Mantelfläche :

 


Aufgabe 9: Tetraeder?

Azra hat zur Berechnung an einer Pyramide mit dreieckiger Grundfläche sehr viele Größen gemessen, um auf alles vorbereitet zu sein. Allerdings sollte sie nur den Oberflächeninhalt berechnen.

About icon (The Noun Project).svg Du kannst durch Klicken, Ziehen und Loslassen mit der Maus die Pyramide drehen. Außerdem kannst du auch die Zahlen genauso verschieben, um sie besser lesen zu können.

GeoGebra

Kevin erwidert, dass dies ja viel zu viel Arbeit sei, da man doch nur eine der Seitenflächen benötigt. Schnell berechnet er:

.

Stimmst du diesem Ergebnis zu oder war Kevin doch etwas zu voreilig? Erkläre, welche Fehler Kevin gemacht hat und korrigiere das Ergebnis!

Tatsächlich unterscheiden sich bei dieser Pyramide die Kantenlängen, da es sich nicht um ein gleichseitiges Dreieck als Grundfläche handelt. Somit sind auch die Seitenflächen nicht deckungsgleich und müssen einzeln berechnet werden. Außerdem hat Kevin die Höhe der Pyramide als Seitenhöhe aufgefasst. Eine korrekte Lösung könnte so aussehen:

Grundfläche G:

Mantelfläche M:

Oberflächeninhalt O:

Pyramiden schätzen

Info
Im Alltag kommt es manchmal vor, dass man nicht alle Angaben kennt, die man zur Bestimmung der Oberfläche benötigt. In diesem Abschnitt kannst du deshalb üben, einzelne Angaben oder auch den gesamten Flächeninhalt zu schätzen. Dabei kommt es nicht so sehr darauf an, dass du immer komplett richtig schätzt (das wäre ja auch so gut wie unmöglich), sondern, dass du ein Gefühl für die Größen entwickelst.


Aufgabe 10: Oberfläche von Pyramiden schätzen

Ordne jedem Bild durch Schätzen den passenden Oberflächeninhalt zu (du musst hier nichts rechnen!). Am Ende bleiben einige Werte übrig, da es mehr Werte als Bilder gibt.

About icon (The Noun Project).svg Durch Anklicken der Bilder werden diese größer.


Sortiere die Größen erstmal grob bevor du sie den Bildern zuordnest.


Aufgabe 11: Karlsruher Pyramide schätzen
Karlsruher Pyramide

Auf dem Bild siehst du die Karlsruher Pyramide, die auf dem Marktplatz in Karlsruhe steht. Berechne den Oberflächeninhalt der Pyramide (inklusive der Grundfläche), indem du zuvor die für die Berechnung notwendigen Größen schätzt.


Info
Die Grundfläche der Pyramide kann als quadratisch angenommen werden.
Nutze die Personen auf dem Bild als Referenzgröße.


Info
In der Lösung werden die exakten Werte genutzt, deine Ergebnisse können also etwas von dieser Lösung abweichen. Die Lösung kann dir aber als Orientierung dienen.

Es gilt und

Damit gilt dann:

Grundfläche G:

Seitenfläche A:

Mantelfläche M:

Oberfläche O:

Vertiefen und Vernetzen

Info
In diesem Abschnitt findest du vertiefende Aufgaben zu dem Oberflächeninhalt von Pyramiden und darüber hinausgehenden Themen. Neben Pyramiden kommen in diesem Abschnitt auch weitere Körper bzw. Flächen vor, die du zum Teil bereits aus dem Unterricht kennst. Die Aufgabe 13 ist als Knobelaufgabe gedacht, sodass du hier testen kannst, wie fit du im Umgang mit den Oberflächeninhalten von Pyramiden und ähnlichen Körpern bist.


Aufgabe 12: Nikolaus-Häuschen

Grundlagen-bearbeiten.png zurück zum Arbeitsblatt

Die Dachfläche besteht aus vier Dreiecken, von denen die jeweils gegenüberliegenden gleich groß sind.

Wir berechnen als erstes den Oberflächeninhalt des Quaders. Die Grundfläche berechnet sich aus

.

Als nächstes wird die Mantelfläche des Quaders berechnet.

Nun berechnen wir die Mantelfläche des Daches. Zunächst berechnen wir die Fläche eines der ersten beiden Dreiecke:

.

Nun fehlt noch die Fläche eines der zweiten beiden Dreiecke:

.

Wir erhalten insgesamt für die Mantelfläche des pyramidenförmigen Daches:

.

Insgesamt erhalten wir also: .

Für 23 Schülerinnen und Schüler muss die Lehrkraft also Papier mitbringen.


Aufgabe 13: Tipi
Tipi

Für das Tipi auf dem Foto soll eine Plane hergestellt werden. Zur Vereinfachung kannst du annehmen, dass das Tipi die Form einer regelmäßigen neuneckigen Pyramide hat, die an einer der Seitenflächen eine halbrunden Öffnung enthält. Der Boden des Tipis wird nicht mit einer Plane ausgekleidet.

Berechne, wie viel Quadratmeter Zeltplane für das Tipi benötigt wird.

Schätze die benötigten Größen zur Berechnung der Fläche, indem du den abgebildeten Menschen als Referenzgröße verwendest.
Der gesuchte Flächeninhalt berechnet sich aus der Mantelfläche abzüglich des halbrunden Eingangs.
Bei dem Eingang handelt es sich um einen Halbkreis. Der Flächeninhalt dieses Halbkreises lässt sich mit der Formel berechnen.

Wir berechnen zunächst die Mantelfläche der neuneckigen Pyramide. Dazu müssen wir zunächst die fehlenden Daten schätzen. Wir nehmen an, dass der Mensch ungefähr groß ist. Wir schätzen daher mit dem Augenmaß, dass die Seitenhöhe des Tipis ungefähr beträgt. Die Breite einer Grundkante schätzen wir auf ungefähr . Wir berechnen zunächst den Flächeninhalt einer einzelnen Seitenfläche (also eines Dreiecks) der neuneckigen Pyramide:

Als nächstes berechnen wir den Mantelflächeninhalt der Pyramide:

Wir schätzen den Durchmesser des Halbkreises auf , da der Eingang ungefähr die Breite der Grundseite hat. Nun berechnen wir den Flächeninhalt des Halbkreises und ziehen diesen dann von der Mantelfläche ab:

Für das Tipi werden ungefähr Zeltplane benötigt.