Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Winkel und Skalarprodukt (Vektoren bzw. Geraden): Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
K (Interne Links verschönert)
Markierung: 2017-Quelltext-Bearbeitung
 
(111 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt)
Zeile 2: Zeile 2:
|2=In diesem Lernpfadkapitel beschäftigst du dich mit dem '''Skalarprodukt''' und dem '''Winkel zwischen zwei Vektoren''' beziehungsweise dem '''Winkel zwischen zwei Geraden'''.  
|2=In diesem Lernpfadkapitel beschäftigst du dich mit dem '''Skalarprodukt''' und dem '''Winkel zwischen zwei Vektoren''' beziehungsweise dem '''Winkel zwischen zwei Geraden'''.  
Du lernst...
Du lernst...
* ... das Skalarprodukt zu berechnen.
* ... das Skalarprodukt zu berechnen und geometrisch zu deuten.
* ...
* ... Vektoren und Geraden mit Hilfe des Skalarprodukts auf Orthogonalität zu überprüfen.
* ...
* ... den Winkel zwischen Vektoren und Geraden zu berechnen.
* ... geometrische Objekte und Situationen im Raum mit Hilfe des Skalarprodukts zu untersuchen.


Dazu haben wir für dich Aufgaben in verschiedenen Schwierigkeitsstufen:
Dazu haben wir für dich Aufgaben in verschiedenen Schwierigkeitsstufen:


*Mit Aufgaben, die <span style="color: #F19E4F"> '''orange''' </span> gefärbt sind, kannst du <span style="color:#F19E4F">'''grundlegende Kompetenzen'''</span> wiederholen und vertiefen.
*Mit Aufgaben, die <span style="color: #F19E4F"> '''orange''' </span> gefärbt sind, kannst du <span style="color:#F19E4F">'''grundlegende Kompetenzen'''</span> wiederholen und vertiefen.
*Aufgaben in <span style="color: #5E43A5"> '''blauer''' </span> Farbe sind Aufgaben <span style="color: #5E43A5">'''mittlerer Schwierigkeit'''</span>
*Aufgaben in <span style="color: #5E43A5"> '''blauer''' </span> Farbe sind Aufgaben <span style="color: #5E43A5">'''mittlerer Schwierigkeit'''</span>
*und Aufgaben mit <span style="color: #89C64A"> '''grünem''' </span> Streifen sind <span style="color: #89C64A">'''Knobelaufgaben'''</span>.
*und Aufgaben mit <span style="color: #89C64A"> '''grünem''' </span> Streifen sind <span style="color: #89C64A">'''Knobelaufgaben'''</span>.


Wir wünschen dir viel Erfolg!
Wir wünschen dir viel Erfolg!
|3=Kurzinfo}}
|3=Kurzinfo}}


==Skalarprodukt==
==Skalarprodukt und Orthogonalität==
In diesem Anschnitt beschäftigen wir uns mit dem Skalarprodukt. Dieses ist ein wichtiger Bestandteil, um später den Winkel zwischen zwei Vektoren berechnen zu können.
In diesem Abschnitt beschäftigen wir uns mit dem Skalarprodukt. Dieses ist ein wichtiger Bestandteil, um im weiteren Verlauf den Winkel zwischen zwei Vektoren und zwei Geraden berechnen zu können.
===Einführung===
Außerdem betrachten wir den Sonderfall, wenn das Skalarprodukt null wird.
===Definitionen und Eigenschaften===


{{Box|1=Definition: Skalarprodukt
{{Box|1=Definition: Skalarprodukt
|2= Für die beiden Vektoren <math> \vec{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} </math> und <math> \vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} </math> ist das '''Skalarprodukt''' definiert als <math> \vec{u} \ast \vec{v} = u_1 \cdot v_1 + u_2 \cdot v_2 + u_3 \cdot v_3 </math>.
|2= Für die beiden Vektoren <math> \vec{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} </math> und <math> \vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} </math> kann man das '''Skalarprodukt''' <math> \vec{u} \ast \vec{v} </math> berechnen mit <math> \vec{u} \ast \vec{v} = u_1 \cdot v_1 + u_2 \cdot v_2 + u_3 \cdot v_3 </math>.
 
Als Ergebnis des Skalarprodukts erhälst du keinen Vektor, sondern eine reelle Zahl.
|3=Merksatz}}
|3=Merksatz}}


{{Box|1= Eigenschaften des Skalarprodukts
{{Box|1= Eigenschaften des Skalarprodukts
|2= Für das Skalarprodukt gilt das...
|2= Für das Skalarprodukt gilt das...
* '''Kommutativgesetz''', das heißt es gilt <math> \vec{u} \ast \vec{v} = \vec{v} \ast \vec{u} </math>.
* '''Kommutativgesetz'''. Es gilt also <math> \vec{u} \ast \vec{v} = \vec{v} \ast \vec{u} </math>.
* '''Distributivgesetz''', das heißt es gilt <math> \vec{u} \ast ( \vec{v} \ast \vec{w}) = ( \vec{u} \ast \vec{v}) \ast \vec{w} </math>.
* '''Distributivgesetz'''. Es gilt also <math> \vec{u} \ast ( \vec{v} + \vec{w}) = \vec{u} \ast \vec{v} + \vec{u} \ast \vec{w} </math>.
* '''Assoziativgesetz''', das heißt es gilt <math> (r \cdot \vec{u}) \ast \vec{v} = r \cdot ( \vec{u} \ast \vec{v}) </math> mit <math> r \in \mathbb{R} </math>.
* '''Assoziativgesetz'''. Es gilt also <math> (r \cdot \vec{u}) \ast \vec{v} = r \cdot ( \vec{u} \ast \vec{v}) </math> mit <math> r \in \mathbb{R} </math>.
|3=Merksatz}}
|3=Merksatz}}


{{Box|1=Merksatz: Orthogonalität
|2= Zwei Vektoren sind orthogonal zueinander, wenn ihr Skalarprodukt null ist.
{{Lösung versteckt|1= "Orthogonal" bedeutet, dass die Vektoren im 90°-Winkel zueinander stehen.
|2= Tipp|3= Einklappen}}
|3=Merksatz}}


{{Lösung versteckt|1=
{{Lösung versteckt|1=
{{Box|Video| 2 = Du hast immer noch keine genaue Vorstellung davon, wie du das Skalarprodukt zweier Vektoren berechnen kannst? Dann schaue dir das Video zum Thema Skalarprodukt an:
Du hast immer noch keine genaue Vorstellung davon, wie du das Skalarprodukt zweier Vektoren berechnen kannst? Dann schaue dir das Video zum Thema Skalarprodukt an:


{{#ev:youtube|Ov_NKtoHpK0}} |3 = Unterrichtsidee| Farbe={{Farbe|gelb}}}} |2= Video zur Wiederholung|3= Einklappen}}
{{#ev:youtube|Ov_NKtoHpK0}} |2= Video zur Wiederholung|3= Einklappen}}




===Übungen===
===Aufgaben===


{{Box|1= Aufgabe 1: Das Skalarprodukt berechnen
{{Box|1= Aufgabe 1: Das Skalarprodukt berechnen
Zeile 44: Zeile 54:
|Farbe= {{Farbe|orange}}|3= Arbeitsmethode}}
|Farbe= {{Farbe|orange}}|3= Arbeitsmethode}}


{{Box|1= Aufgabe 2: Terme umformen
|2= Wenn du Terme zuerst umzuformst, bevor du das Skalarprodukt berechnest, sparst du dir eine Menge Aufwand.


Löse die Klammern auf und fasse sinnvoll zusammen. Notiere deine Ergebnisse und überprüfe sie anschließend mit den Lösungen. Für die Vektoren müssen in dieser Aufgabe keine Werte eingesetzt werden.
{{Box|1= Aufgabe 2: Skalarprodukt oder Multiplikation?
|2= Entscheide in den folgenden Aufgaben, ob es sich um ein Skalarprodukt oder eine Multiplikation handelt.
{{LearningApp|width=100%|height=500px|app=20212500}}


'''a)''' <math> (3 \vec{a} - 5 \vec{b}) \cdot (2 \vec{a} + 7 \vec{b}) </math>
{{Lösung versteckt|1= Bei der Multiplikation von zwei reellen Zahlen erhältst du wieder eine reelle Zahl. Das Skalarprodukt von zwei Vektoren liefert jedoch nicht einen Vektor, sondern ebenfalls eine reelle Zahl.
|2= allgemeiner Tipp|3= Einklappen}}


{{Lösung versteckt|1= <math> 6 \vec{a}^2 + 11 \vec{a} \vec{b} - 35 \vec{b}^2 </math>
|Farbe= {{Farbe|orange}}|3= Arbeitsmethode}}
|2= Lösung zu a)|3= Einklappen}}


'''b)''' <math> (3 \vec{e}) \cdot \vec{f} + \vec{f} \cdot (2 \vec{e}) - 4 (\vec{e} \cdot \vec{f}) </math>
{{Box|1= Aufgabe 3: Orthogonalität I
|2= Stehen die Vektoren senkrecht (orthogonal) aufeinander? {{LearningApp|width=100%|height=500px|app=2695651}}
|Farbe= {{Farbe|orange}}|3= Arbeitsmethode}}


{{Lösung versteckt|1= <math> \vec{e} \vec{f} </math>
{{Box|1= Aufgabe 4: Orthogonalität II
|2= Lösung zu b)|3= Einklappen}}
|2= Bestimme die fehlende Koordinate so, dass die Vektoren <math> \vec{u} </math> und <math> \vec{v} </math> orthogonal zueinander sind.
<quiz display="simple">
{<math> \mathbf{a)} \vec{u} = \begin{pmatrix} 1 \\ u_2 \\ 3 \end{pmatrix} , \vec{v} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} </math>}
+ <math> u_2 = 5 </math>
- <math> u_2 = -5 </math>
- <math> u_2 = 7 </math>


'''c)''' <math> (3 \vec{u} - 2 \vec{v}) \cdot (\vec{u} + 2 \vec{v}) - 7(\vec{u} \cdot \vec{v}) </math>
{<math> \mathbf{b)} \vec{u} = \begin{pmatrix} -1 \\ 4 \\ 2 \end{pmatrix} , \vec{v} = \begin{pmatrix} 3 \\ 0 \\ v_3 \end{pmatrix} </math>}
+ <math> v_3 = \frac{3}{2} </math>
- <math> v_3 = \frac{2}{3} </math>
- <math> v_3 = -\frac{3}{2} </math>


{{Lösung versteckt|1= <math> 3 \vec{u}^2 - \vec{u} \vec{v} -4 \vec{v} </math>
{<math> \mathbf{c)} \vec{u} = \begin{pmatrix} u_1 \\ 1 \\ 63 \end{pmatrix} , \vec{v} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} </math>}
|2= Lösung zu c)|3= Einklappen}}
- <math> u_1 = \frac{1}{2} </math>
+ <math> u_1 = -\frac{1}{2} </math>
- <math> u_1 = -1 </math>
</quiz>
|3= Arbeitsmethode}}


'''d)''' <math> (2 \vec{a} + 3 \vec{b} - \vec{c}) \cdot ( \vec{a} - \vec{b}) </math>
{{Box|1= Aufgabe 5: Lagebeziehungen von Vektoren
|2= Sei <math> \vec{u} \perp \vec{v} </math> und <math> \vec{v} \perp \vec{w} </math>. Lässt sich aus dieser Information die Lagebeziehung von <math> \vec{u} </math> und <math> \vec{w} </math> im zweidimensionalen Raum <math> \R^2 </math> erschließen?
{{Lösung versteckt|1= Das <math> \perp </math> in <math> \vec{u} \perp \vec{v} </math> bedeutet, dass die Vektoren <math> \vec{u} </math> und <math> \vec{v} </math> orthogonal zueinander sind.
|2= Tipp|3= Einklappen}}


{{Lösung versteckt|1= <math> 2 \vec{a}^2 + \vec{a} \vec{b} - 3 \vec{b}^2 - \vec{c} \vec{a} + \vec{c} \vec{b} </math>
{{Lösung versteckt|1= <math> \vec{u} </math> und <math> \vec{w} </math> sind parallel zueinander, d.h. <math> \vec{u} \parallel \vec{w} </math>.
|2= Lösung zu d)|3= Einklappen}}
|2= Lösung|3= Einklappen}}
Gilt dies auch für den dreidimensionalen Raum <math> \R^3 </math>?
{{Lösung versteckt|1= Du kannst dir einen Körper (z.B. einen Würfel) oder drei Stifte als Hilfe nehmen. Wenn es dir hilft, mache eine kleine Skizze zur Veranschaulichung.
|2= Tipp|3= Einklappen}}


'''e)''' <math> ( \vec{x} + \vec{y})^2 - (\vec{x} - \vec{y})^2 </math>
{{Lösung versteckt|1= <math> \vec{u} </math> und <math> \vec{w} </math> sind nicht zwangsweise parallel zueinander. Genau genommen weiß man erst einmal gar nichts über ihre Lage. Durch die drei Dimensionen können sie drei unterschiedliche Richtungen haben. Dies lässt sich schon allein durch das Betrachten eines dreidimensionalen Koordinatensystems veranschaulichen.
|2= Lösung|3= Einklappen}}


{{Lösung versteckt|1= Erinnere dich an die binomischen Formeln. Wenn du nicht mehr genau weißt, wie die binomischen Formeln lauten, dann schaue in Tipp 2.|2= Tipp 1 zu e)|3= Einklappen}}
|3= Arbeitsmethode}}
{{Lösung versteckt|1= Erste binomische Formel: <math> (x+y)^2 = x^2 + 2xy + y^2 </math>


Zweite binomische Formel: <math> (x-y)^2 = x^2 - 2xy + y^2 </math>
{{Box|1= Aufgabe 6: Beweis des Distributivgesetzes
|2= Beweise das Distributivgesetz, also <math> \vec{u} \ast ( \vec{v} + \vec{w}) = \vec{u} \ast \vec{v} + \vec{u} \ast \vec{w} </math>.


Dritte binomische Formel: <math> (x+y) \cdot (x-y) = x^2 - y^2 </math>
{{Lösung versteckt|1=  
|2= Tipp 2 zu e)|3= Einklappen}}
Schreibe zunächst die Vektoren <math> \vec{u}, \vec{v} </math> und <math> \vec{w} </math> als Spaltenvektoren und überlege dir, was das Skalarprodukt bedeutet.
{{Lösung versteckt|1= <math> 4 \vec{x} \vec{y} </math>
|2= Tipp 1|3= Einklappen}}
|2= Lösung zu e)|3= Einklappen}}


'''f)''' <math> ( \vec{g} + 3 \vec{h})^2 - \vec{g} \cdot (\vec{g} + 6 \vec{h}) </math>
{{Lösung versteckt|1=
Addiere die Vektoren komponentenweise und sortiere die Terme sinnvoll.
|2= Tipp 2|3= Einklappen}}


{{Lösung versteckt|1= <math> 9 \vec {h}^2 </math>
{{Lösung versteckt|1=  
|2= Lösung zu f)|3= Einklappen}}
1. Schreibe die Vektoren <math> \vec{u}, \vec{v} </math> und <math> \vec{w} </math> als Spaltenvektoren.


|3= Arbeitsmethode}}
<math> \vec{u} \ast ( \vec{v} + \vec{w}) = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \ast (\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} + \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix})</math>


{{Box|1= Aufgabe 3: Multiplikation oder Skalarprodukt?
2. Addiere die Vektoren <math> \vec{v} </math> und <math> \vec{w} </math> komponentenweise.
|2= Enscheide in den folgenden Aufgaben, wann der Malpunkt für das Skalarprodukt und wann er für die Multiplkation von Zahlen steht. Die Reihenfolge der Antworten innerhalb einer Antwortmöglichkeit soll der Reihenfolge der Malpunkte innerhalb der Aufgabe entsprechen.
<quiz display="simple">
{<math> \vec{a} \cdot \vec {b} </math>}
+ Skalarprodukt
- Multiplikation


{<math> \vec{b} \cdot \vec {a} </math>}
<math> = \vec{u} \ast \begin{pmatrix} v_1 + w_1 \\ v_2 + w_2 \\ v_3 + w_3 \end{pmatrix} </math>
+ Skalarprodukt
- Multiplikation


{<math> \vec{a} \cdot (\vec {b} + \vec{c}) </math>}
3. Wende die Formel für das Skalarprodukt an.
+ Skalarprodukt
- Multiplikation


{<math> \vec{b} \cdot (\vec {a} + \vec{c}) </math>}
<math> = u_1 \cdot (v_1 + w_1) + u_2 \cdot (v_2 + w_2) + u_3 \cdot (v_3 + w_3) </math>
+ Skalarprodukt
- Multiplikation


{<math> (\vec{a} - \vec {b}) \cdot (\vec{a} + \vec{c}) </math>}
4. Multipliziere die Klammern aus (Distributivgesetz der reellen Zahlen).
+ Skalarprodukt
- Multiplikation


{<math> (\vec{a} \cdot \vec {b}) \cdot (\vec{a} \cdot \vec {c}) </math>}
<math> = u_1 \cdot v_1 + u_1 \cdot w_1 + u_2 \cdot v_2 + u_1 \cdot w_2 + u_3 \cdot v_3 + u_1 \cdot w_3 </math>
- Skalarproduk/Multiplikation/Multiplikation
+ Skalarprodukt/Multiplikation/Skalarprodukt
- Multiplikation/Multiplikation/Multiplikation
- Skalarprodukt/Skalarprodukt/Skalarprodukt
- Multiplikation/Skalarprodukt/Skalarprodukt
- Multiplikation/Multiplikation/Multiplikation


5. Sortiere die Summen (Kommutativgesetz der reellen Zahlen).


{<math> \vec{b} \cdot (\vec {a} \cdot \vec{c}) </math>}
<math> = u_1 \cdot v_1 + u_2 \cdot v_2 + u_3 \cdot v_3 + u_1 \cdot w_1 + u_1 \cdot w_2 + u_1 \cdot w_3 </math>
- Multiplikation/Multiplikation
- Skalarprodukt/Skalarprodukt
+ Multiplikation/Skalarprodukt
- Skalarprodukt/Multiplikation


{<math> (\vec{b} \cdot \vec{a}) \cdot \vec {c} </math>}
6. Wende die Formel für das Skalarprodukt "rückwärts" an.
- Multiplikation/Multiplikation
- Skalarprodukt/Skalarprodukt
- Multiplikation/Skalarprodukt
+ Skalarprodukt/Multiplikation


<math> = \vec{u} \ast \vec{v} + \vec{u} \ast \vec{w} </math>
|2= Lösung|3= Einklappen}}
|Farbe= {{Farbe|grün}}|3= Arbeitsmethode}}


</quiz>
{{Lösung versteckt|1= Bei der Multiplikation von zwei reellen Zahlen erhälst du wieder eine reelle Zahl. Das Produkt von zwei Vektoren liefert jedoch nicht einen Vektor, sondern eine reelle Zahl. Diese ist genau durch das Skalarprodukt definiert.
|2= allgemeiner Tipp|3= Einklappen}}
|3= Arbeitsmethode}}


==Winkel==
==Winkel==
Zeile 148: Zeile 151:
|2= Die beiden Vektoren <math> \vec{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} </math> und <math> \vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} </math> haben den Innenwinkel <math> \alpha </math>.  
|2= Die beiden Vektoren <math> \vec{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} </math> und <math> \vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} </math> haben den Innenwinkel <math> \alpha </math>.  


Es gilt: <math> \vec{u} \ast \vec{v} = |\vec{u}| \cdot |\vec{v}| \cdot \cos \alpha </math>  
Es gilt: <math> \vec{u} \ast \vec{v} = |\vec{u}| \cdot |\vec{v}| \cdot \cos (\alpha) </math>  
 
Stellt man die Formel nach <math> \cos(\alpha) </math> um, erhält man: <math> \cos (\alpha) = \frac{\vec{u} \ast \vec{v}}{|\vec{u}| \cdot |\vec{v}|} </math>.
 
{{Lösung versteckt|1= Der Betrag eines Vektors ist im geometrischen Sinne seine Länge. Die Formel zur Berechnung des Betrags lautet: <math> | \vec{u} | = | \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} | = \sqrt{u_1 ^2 + u_2 ^2 + u_3^2} </math>
Wenn du darüber noch mehr wissen möchtest, schaue dir das Lernpfadkapitel [[Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Punkte und Vektoren im Raum|Punkte und Vektoren im Raum]] an.
|2= Erinnerung|3= Einklappen}}


Stellt man die Formel nach <math> \cos(\alpha) </math> um, erhält man: <math> \cos (\alpha) = \frac{u_1 \cdot v_1 + u_2 \cdot v_2 + u_3 \cdot v_3}{\sqrt{u_1 ^2 + u_2 ^2 + u_3 ^2} \cdot \sqrt{v_1 ^2 + v_2 ^2 + v_3 ^2}} </math>
|3=Merksatz}}
|3=Merksatz}}


{{Box|1=Merksatz
{{Lösung versteckt|1= Du hast immer noch keine genaue Vorstellung davon, wie du den Winkel zwischen zwei Vektoren berechnen kannst? Dann schaue dir das Video an:
|2= Zwei Vektoren sind orthogonal zueinander, wenn ihr Skalarprodukt Null ist.
{{#ev:youtube|6r_OaotfRys}} |2= Wiederholung|3= Einklappen}}
|3=Merksatz}}
 
{{Box|1=Satz: Sonderfälle
|2= Neben dem Sonderfall der Orthogonalität, d.h. <math> \alpha = 90^{\circ} </math> mit <math> \cos (90) = 0 </math>, gibt es noch zwei weitere:
 
* Wenn <math> \alpha = 0^{\circ} </math> mit <math> \cos (0) = 1 </math>, dann haben die beiden Vektoren die gleiche Richtung.


{{Lösung versteckt|1= "Orthogonal" bedeutet, dass die Vektoren im 90°-Winkel zueinander stehen.
* Wenn <math> \alpha = 180^{\circ} </math> mit <math> \cos (180) = -1 </math>, dann haben die beiden Vektoren entgegengesetzte Richtungen.
|2= Tipp|3= Einklappen}}


{{Box|1=Satz: "Sonderfälle"
Außerdem lässt sich anhand des Skalarproduktes leicht erkennen, ob der Winkel zwischen den beiden Vektoren spitz oder stumpf ist:
|2= Neben dem Sonderfall der Orthogonalität gibt es noch zwei weitere:
Wenn <math> \alpha = 0^{\circ} </math>, dann haben die beiden Vektoren die gleiche Richtung.
Wenn <math> \alpha = 180^{\circ} </math>, dann haben die beiden Vektoren entgegengesetzte Richtungen.
|3=Merksatz}}


{{Box|1= Aufgabe 4: Grafische Darstellung und Veränderungen durch den Winkel
* Wenn das Skalarprodukt positiv ist, handelt es sich um einen spitzen Winkel, d.h. <math> 0^{\circ} \leq \alpha < 90^{\circ} </math>.
|2= Schau dir die folgende Darstellung zweier Vektoren an. Wie verändert sich das Skalarprodukt, wenn du die Länge eines Vektors veränderst?
https://www.geogebra.org/m/nJzV8Euq#material/qcHvSSPD --> Wie kann das eingebunden werden???
{{Lösung versteckt|1= Das Skalarprodukt ändert sich nicht, wenn die Länge eines (oder beider) Vektoren variiert wird.
|2= Lösung|3= Einklappen}}
|Farbe= {{Farbe|orange}}|3= Arbeitsmethode}}


{{Box|1=Satz: "Betrag von Vektoren"
* Wenn das Skalarprodukt negativ ist, handelt es sich um einen stumpfen Winkel, d.h. <math> 90^{\circ} < \alpha \leq 180^{\circ} </math>.
|2= Der Betrag eines Vektors ist im geometrische Sinne seine Länge. Die Formel zur Berechnung des Betrags lautet: <math> | \vec{u} | = | \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} | = \sqrt{u_1 ^2 + u_2 ^2} </math>  
Wenn du darüber noch mehr wissen möchtest, schaue dir Lernpfadkapitel Punkte und Vektoren im Raum an.
|3=Merksatz}}
|3=Merksatz}}


{{Lösung versteckt|1=
===Aufgaben===
{{Box|Video| 2 = Du hast immer noch keine genaue Vorstellung davon, wie du den Winkel zwischen zwei Vektoren berechnen kannst? Dann schaue dir das Video an:
{{#ev:youtube|6r_OaotfRys}} |3 = Unterrichtsidee| Farbe={{Farbe|gelb}}}} |2= Wiederholung|3= Einklappen}}
 
===Übungen===
====Winkel zwischen zwei Vektoren====
====Winkel zwischen zwei Vektoren====
{{Box|1= Aufgabe 5: Winkelberechnung
{{Box|1= Aufgabe 7: Winkelberechnung
|2= Berechne die Größe des Winkels α zwischen den Vektoren <math> \vec{u} </math> und <math> \vec{v} </math>. Du darfst dafür deinen Taschenrechner verwenden. Runde das Ergebnis auf die zweite Nachkommastelle.
|2= Berechne die Größe des Winkels <math> \alpha </math> zwischen den Vektoren <math> \vec{u} </math> und <math> \vec{v} </math>. Du darfst dafür deinen Taschenrechner verwenden. Runde das Ergebnis auf die zweite Nachkommastelle.
<quiz display="simple">
<quiz display="simple">
{a) <math> \vec{u} = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} , \vec{v} = \begin{pmatrix} 5 \\ 0 \\ 3 \end{pmatrix} </math>}
{<math> \mathbf{a)} \vec{u} = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix} , \vec{v} = \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix} </math>}
- α = 1,14°
+ <math> \alpha = 57{,}12^\circ </math>
+ α = 65,56°
- <math> \alpha = 0{,}10^\circ </math>
- α = 29,01°
- <math> \alpha = 62{,}80^\circ </math>


{b) <math>\vec{u} = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix} , \vec{v} = \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix} </math>}
{<math> \mathbf{b)} \vec{u} = \begin{pmatrix} -11 \\ 4 \\ 1 \end{pmatrix} , \vec{v} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}</math>}
+ α = 57,12°
- <math> \alpha = 59{,}97^\circ </math>
- α = 0,10°
- <math> \alpha = 44{,}75^\circ </math>
- α = 62,80°
+ <math> \alpha = 90^\circ </math>


{c) <math> \vec{u} = \begin{pmatrix} -11 \\ 4 \\ 1 \end{pmatrix} , \vec{v} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}</math>}
{<math> \mathbf{c)} \vec{u} = \begin{pmatrix} 1 \\ -2 \\ -3 \end{pmatrix} , \vec{v} = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} </math>}
- α = 59,97°
- <math> \alpha = 0^\circ </math>
- α = 44,75°
+ <math> \alpha = 180^\circ </math>
+ α = 90°
- <math> \alpha = -1^\circ </math>
</quiz>
</quiz>
|Farbe= {{Farbe|orange}}|3= Arbeitsmethode}}
|Farbe= {{Farbe|orange}}|3= Arbeitsmethode}}


{{Box|1= Aufgabe 6: Orthogonalität I
|2= {{LearningApp|width=100%|height=500px|app=2695651}}
|Farbe= {{Farbe|orange}}|3= Arbeitsmethode}}
{{Box|1= Aufgabe 7: Orthogonalität II
|2= Bestimme die fehlende Koordinate so, dass die Vektoren <math> \vec{u} </math> und <math> \vec{v} </math> orthogonal zueinander sind.
<quiz display="simple">
{a) <math> \vec{u} = \begin{pmatrix} 1 \\ u_2 \\ 3 \end{pmatrix} , \vec{v} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} </math>}
+ 5
- -5
- 7
{b) <math> \vec{u} = \begin{pmatrix} -1 \\ 4 \\ 2 \end{pmatrix} , \vec{v} = \begin{pmatrix} 3 \\ 0 \\ v_3 \end{pmatrix} </math>}
+ <math> \frac{3}{2} </math>
- <math> \frac{2}{3} </math>
- -<math> \frac{3}{2} </math>
{c) <math> \vec{u} = \begin{pmatrix} u_1 \\ 1 \\ 63 \end{pmatrix} , \vec{v} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} </math>}
- <math> \frac{1}{2} </math>
+ -<math> \frac{1}{2} </math>
- -1
</quiz>
|3= Arbeitsmethode}}


{{Box|1= Aufgabe 8: Räumliches Vorstellungsvermögen
{{Box|1= Aufgabe 8: Räumliches Vorstellungsvermögen
|2= Sei <math> \vec{u} \perp \vec{v} </math> und <math> \vec{v} \perp \vec{w} </math>. Was lässt sich im zweidimensionalen Raum <math> \R^2 </math> über die Beziehung von <math> \vec{u} </math> und <math> \vec{w} </math> sagen?
|2= Wie häufig wird das Skalarprodukt zwischen den (als Vektoren gedeuteten) Zeigern einer Uhr täglich null?
{{Lösung versteckt|1= <math> \vec{u} </math> und <math> \vec{w} </math> sind parallel zueinander, d.h. <math> \vec{u} \parallel \vec{w} </math>.
|2= Lösung|3= Einklappen}}
Im Vergleich dazu: Was lässt sich über die Beziehung von <math> \vec{u} </math> und <math> \vec{w} </math> im dreidimensionalen Raum <math> \R^3 </math> sagen?
{{Lösung versteckt|1= Du kannst dir einen Körper als Hilfe nehmen. Denke zum Beispiel an einen Würfel. Wenn es dir hilft, mache eine kleine Skizze zur Veranschaulichung.
|2= Tipp|3= Einklappen}}
 
{{Lösung versteckt|1= <math> \vec{u} </math> und <math> \vec{w} </math> sind nicht parallel zueinander.
|2= Lösung|3= Einklappen}}
 
|3= Arbeitsmethode}}
 
{{Box|1= Knobelaufgabe: Räumliches Vorstellungsvermögen
|2= Wie häufig wird das Skalarprodukt zwischen den (als Vektoren gedeuteten) Zeiger einer Uhr täglich null?


{{Lösung versteckt|1=  
{{Lösung versteckt|1=  
Zeile 253: Zeile 213:


{{Lösung versteckt|1= Jede Stunde befinden sich die beiden Uhrzeiger zweimal orthogonal zueinander.  
{{Lösung versteckt|1= Jede Stunde befinden sich die beiden Uhrzeiger zweimal orthogonal zueinander.  
Viermal am Tag, nämlich zu den Uhrzeiten 3, 9, 15 und 21Uhr, zählt der rechte Winkel zweimal.  
Viermal am Tag, nämlich zu den Uhrzeiten 3, 9, 15 und 21 Uhr, gibt es nur den einen rechten Winkel, der die volle Stunde anzeigt.


Damit ergibt sich, dass das Skalarprodukt der beiden Uhrzeiger täglich 48 - 4 = 44 Mal null beträgt.
Damit ergibt sich, dass das Skalarprodukt der beiden Uhrzeiger täglich 48 - 4 = 44 Mal null beträgt.
Zeile 262: Zeile 222:
====Winkel zwischen zwei Geraden====
====Winkel zwischen zwei Geraden====


In diesem Abschnitt lernst du, wie man den Schnittwinkel zweier Geraden berechnet. Dabei sind die beiden Geraden in Parameterform gegeben.
In diesem Abschnitt lernst du, wie man den '''Winkel''' zwischen zwei Geraden berechnet. Dabei sind die beiden Geraden in Parameterform gegeben.


{{Lösung versteckt|1= Wenn du nicht mehr weißt, wie man eine Geradengleichung aufstellt, schau dir das Lernpfadkapitel "Geraden im Raum" an.
{{Lösung versteckt|1= Wenn du nicht mehr weißt, wie man eine Geradengleichung aufstellt, schau dir das Lernpfadkapitel [[Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Geraden im Raum|Geraden im Raum]] an.
|2= Tipp|3= Einklappen}}
|2= Tipp|3= Einklappen}}


Wenn sich zwei Geraden schneiden, kann man einen Schnittwinkel berechnen.
{{Box|1=Winkel zwischen zweier Geraden
{{Lösung versteckt|1= Um den Schnittwinkel zwischen zwei Vektoren zu berechnen, betrachtest du lediglich die Richtungsvektoren der Geraden.
|2=Auch zwischen zwei Geraden kann man einen Winkel berechnen, sogar dann, wenn sich die Geraden gar nicht schneiden.
|2= Tipp 1|3= Einklappen}}
Um den Winkel zu berechnen, in den zwei Geraden zueinander stehen, betrachtest du lediglich die Richtungsvektoren der Geraden.
{{Lösung versteckt|1= Mach dich mit den Eigenschaften von Geraden vertraut. Es gibt vier mögliche Lagen zweier Geraden:
 
echt parallele Geraden, identische Geraden, windschiefe Geraden, sich schneidende Geraden
{{Lösung versteckt|1=Die Formel zur Berechnung des Winkels zwischen zwei Vektoren lautet
|2= Tipp 2|3= Einklappen}}
 
<math> \cos(\alpha) = \frac {\vec{u} \ast \vec{v}}{|\vec{u}| \cdot |\vec{v}|} </math>. |2= Erinnerung|3= Einklappen}}
 
{{Lösung versteckt|1=  
1. Skalarprodukt der Richtungsvektoren berechnen
 
2. Länge der Richtungsvektoren berechnen


{{Box|Schnittwinkel zwischen zwei Geraden|Mit dem Schnittwinkel ist immer der spitze Winkel zwischen zwei Geraden und nie der Stumpfwinkel gemeint. Also <math> 0^\circ \leq \alpha \leq 90^\circ </math>. Aus diesem Grund wird im Zähler der Winkelformel auch der Betrag verwendet.|3= Hinweis}}
3. Ergebnisse in die Formel einsetzen


'''Schnittwinkel zweier Geraden - Formel'''
4. Formel nach <math> \alpha </math> auflösen


Gegeben sind zwei sich schneidende Geraden in Parameterform
5. ggf. spitzen Winkel berechnen (siehe nächste Box)
|2= Vorgehensweise
|3= Einklappen}}


*<math> g \colon \vec{x} = \vec{a} + r \vec{u} </math>
|3= Merksatz}}
*<math> h \colon \vec{x} = \vec{b} + s \vec{v} </math>


Die Formel zur Berechnung des Schnittwinkels der beiden Geraden lautet
{{Box|Winkel zwischen zwei Geraden|Mit dem Winkel ist immer der spitze Winkel zwischen zwei Geraden und nie der Stumpfwinkel gemeint, d. h. <math> 0^\circ \leq \beta < 90^\circ </math>. Dies wird in der Formel nicht berücksichtigt. Stattdessen muss man, falls <math> \alpha \geq 90^\circ </math>, noch <math> \beta = 180^\circ - \alpha </math> berechnen. Der gesuchte Winkel ist dann <math> \beta </math>.|3= Merksatz}}


<math> cos(\alpha) = \frac {\vec{u} \ast \vec{v}}{|\vec{u}| \cdot |\vec{v}|} </math>.
{{Box|1= Aufgabe 9: Winkel berechnen
|2= Berechne den Winkel zwischen den Geraden <math> g </math> und <math> h </math>. <math> r, s \in \mathbb{R} </math>.


{{Box|1= Vorgehensweise
<math>g \colon \vec{x} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} </math>
|2=
* 1. Skalarprodukt der Richtungsvektoren berechnen
* 2. Länge der Richtungsvektoren berechnen
* 3. Ergebnisse in die Formel einsetzen
* 4. Formel nach alpha auflösen
|3=Merksatz}}


{{Box|1= Aufgabe 9: Schnittwinkel berechnen
|2= Berechne den Schnittwinkel der Geraden <math> g </math>  und <math> h </math>, <math> r, s \in \mathbb{R} </math>.


<math>g \colon \vec{x} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} </math>;
<math>h \colon \vec{x} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} </math>  
<math>h \colon \vec{x} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} </math>  


Zeile 304: Zeile 263:
{{Lösung versteckt
{{Lösung versteckt
|
|
* 1. Skalarprodukt der Richtungsvektoren berechnen
1. Skalarprodukt der Richtungsvektoren berechnen
<math> \vec{u} \ast \vec{v} = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} \ast \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}  
<math> \vec{u} \ast \vec{v} = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} \ast \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}  
= 1 \cdot 1 + 3 \cdot (-1) + 0 \cdot 3 = -2 </math>
= 1 \cdot 1 + 3 \cdot (-1) + 0 \cdot 3 = -2 </math>


* 2. Länge der Richtungsvektoren berechnen
2. Länge der Richtungsvektoren berechnen
<math> |\vec{u}| = \sqrt{1^2+3^2+0^2} = \sqrt{10} </math>
<math> |\vec{u}| = \sqrt{1^2+3^2+0^2} = \sqrt{10} </math>


<math> |\vec{v}| = \sqrt{1^2+(-1)^2+3^2} = \sqrt{11} </math>
<math> |\vec{v}| = \sqrt{1^2+(-1)^2+3^2} = \sqrt{11} </math>


* 3. Ergebnisse in die Formel einsetzen
3. Ergebnisse in die Formel einsetzen: Die in Schritt 1 und 2 berechneten Ergebnisse setzt du nun in die Formel ein.
Die in Schritt 1 und 2 berechneten Ergebnisse setzt du nun in die Formel ein


<math> cos(\alpha) = \frac {\vec{u} \ast \vec{v}}{|\vec{u}| \cdot |\vec{v}|} </math>
<math> \cos(\alpha) = \frac {\vec{u} \ast \vec{v}}{|\vec{u}| \cdot |\vec{v}|} </math>


und erhältst somit
und erhältst somit


<math> cos(\alpha) = \frac {|-2|}{\sqrt{10} \cdot \sqrt{11}} = \frac{2}{\sqrt{110}} </math>
<math> \cos(\alpha) = \frac {-2}{\sqrt{10} \cdot \sqrt{11}} </math>
 
4. Formel nach <math> \alpha </math> auflösen
 
<math> \alpha = \cos^{-1} (\frac{-2}{\sqrt{110}}) \approx 101^\circ </math>


* 4. Formel nach <math> \alpha </math> auflösen
5. spitzen Winkel berechnen, da <math> \alpha \geq 90^\circ </math>
<math> \alpha = cos^{-1} (\frac{2}{\sqrt{110}}) \approx 79,01^\circ </math>


Der Schnittwinkel zwischen den beiden Geraden g und h beträgt ca. <math> 79,01^\circ </math>
<math> \beta = 180^\circ - 101^\circ = 79^\circ </math>  


|Lösung Aufgabe 9 anzeigen
Der Schnittwinkel zwischen den beiden Geraden <math>g</math> und <math>h</math> beträgt ca. <math> 79^\circ </math>
|Lösung Aufgabe 9 verbergen
 
|Lösung anzeigen
|Lösung verbergen
}}
}}
|Farbe= {{Farbe|orange}}|3= Arbeitsmethode}}
|3= Arbeitsmethode}}
 
 
{{Box|1= Aufgabe 10: Innenwinkel in einem Dreieck
|2= In einem kartesischen Koordinatensystem sind die Punkte <math> A (1|1|2)</math>, <math> B(2|2|3)</math> und <math> C(3|1|0)</math> gegeben.
 
Bestimme die Größe der Innenwinkel des Dreiecks <math>ABC</math> sowie die Seitenlängen des Dreiecks.
 
 
{{Lösung versteckt|
1. Die Richtungsvektoren zwischen den Ortsvektoren bestimmen:
 
<math> \vec{a} = \overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 2 \\ 2\\  3 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ -3 \end{pmatrix} </math>
 
<math> \vec{b} = \overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix} </math>
 
<math> \vec{c} = \overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} </math>
 
Betrachten wir das Skalarprodukt der Vektoren <math> \vec{b}</math> und <math> \vec{c}</math>:
<math> \vec{b} \ast \vec{c} = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix} \ast \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 2 \cdot 1 + 0 \cdot 1 + (-2) \cdot 2 = 2 + 0 + (-2) = 0</math>.
 
Dann wissen wir, wenn das Skalarprodukt null ist, dass die beiden Vektoren <math> \vec{b}</math> und <math> \vec{c} </math> orthogonal zueinander stehen, also <math> \alpha = 90^\circ</math>.
 
2. Die Länge der Richtungsvektoren bestimmen:
 
<math> |\vec{a}| = \sqrt{1^2+(-1)^2+(-3)^2} = \sqrt{11} </math>
 
<math> |\vec{b}| = \sqrt{2^2+0^2+(-2)^2} = \sqrt{8} </math>
 
<math> |\vec{c}| = \sqrt{1^2+1^2+1^2} = \sqrt{3} </math>
 
Diese Längen entsprechen auch den '''Seitenlängen''' des Dreiecks <math>ABC</math>.
 
3. Winkel <math> \delta </math> zwischen den beiden Vektoren <math> \vec{a} </math> und <math> \vec{c} </math> bestimmen:


<math> \cos(\delta) = \frac {\vec{a} \ast \vec{c}}{|\vec{a}| \cdot |\vec{c}|} </math>


{{Box1= Aufgabe 10: Lückentext
<math> \cos(\delta) = \frac {1+(-1)+(-3)}{\sqrt{11} \cdot \sqrt{3}} = \frac{-3}{\sqrt{33}} </math>
|2= {{LearningApp|width=100%|height=500px|app=...}}
|Farbe= {{Farbe|orange}}|3= Arbeitsmethode}}


Aufgabe 10: Billiardaufgabe (Fokus Mathematik, S. 225, Nr. 28)
4. Formel nach <math> \delta </math> auflösen


Aufgabe 11: S.130, Nr. 18
<math> \delta = \cos^{-1} \left(\frac{-3}{\sqrt{33}} \right) \approx 121{,}5^\circ </math>


Da wir bereits wissen, dass <math> \alpha = 90^\circ</math>, kann der Dreiecksinnenwinkel beim Punkt <math>B</math> nicht <math> 121{,}5^\circ </math> sein, da die Winkelsumme sonst bereits bei <math> 90^\circ + 121{,}5^\circ = 211{,}5^\circ > 180^\circ </math> liegen würde. Also berechnen wir den Winkel:


{{Navigation verstecken|
5. spitzen Winkel berechnen
'''Wenn du alle Aufgaben richtig beantwortet hast:'''
*Suche dir aus den in den folgenden Abschnitten genannten Themen eines (oder mehrere) aus. Zu jedem Thema gibt es neben Förder- auch Forderaufgaben, mit denen du dich beschäftigen kannst.


<math> \beta = 180^\circ - 121{,}5^\circ = 58{,}5^\circ </math>


'''Wenn du einen oder auch mehrere Fehler gemacht hast:'''
Den dritten Innenwinkel können wir anschließend wie folgt berechnen:
*bei den Aufgaben 1 - 3, gehe zu:
*bei den Aufgaben 4 - 6, gehe zu:
*bei den Aufgaben 7 - 9, gehe zu:
*bei den Aufgaben 10 - 12, gehe zu:
*bei den Aufgaben 13 - 15, gehe zu:  


<small><<< zurück zu </small>
<math> \gamma = 180^\circ - \alpha - \beta = 180^\circ - 90^\circ - 58{,}5^\circ = 31{,}5^\circ </math>
|Wie geht es weiter?|schließen}}


Die '''Innenwinkel''' des Dreiecks <math> ABC </math> sind <math> \alpha = 90^\circ, \beta = 58{,}5^\circ \text{ und } \gamma = 31{,}5^\circ.</math>
|Lösung anzeigen
|Lösung verbergen
}}
|3= Arbeitsmethode}}


{{Fortsetzung|vorher=zurück zur Kapitelauswahl|vorherlink=Digitale_Werkzeuge_in_der_Schule/Unterwegs_in_3-D_–_Punkte,_Vektoren,_Geraden_und_Ebenen_im_Raum#Kapitelauswahl}}


{{SORTIERUNG:{{SUBPAGENAME}}}}
{{SORTIERUNG:{{SUBPAGENAME}}}}
[[Kategorie:Digitale Werkzeuge in der Schule]]
[[Kategorie:Digitale Werkzeuge in der Schule]]

Aktuelle Version vom 23. Juni 2021, 23:18 Uhr

Info

In diesem Lernpfadkapitel beschäftigst du dich mit dem Skalarprodukt und dem Winkel zwischen zwei Vektoren beziehungsweise dem Winkel zwischen zwei Geraden. Du lernst...

  • ... das Skalarprodukt zu berechnen und geometrisch zu deuten.
  • ... Vektoren und Geraden mit Hilfe des Skalarprodukts auf Orthogonalität zu überprüfen.
  • ... den Winkel zwischen Vektoren und Geraden zu berechnen.
  • ... geometrische Objekte und Situationen im Raum mit Hilfe des Skalarprodukts zu untersuchen.

Dazu haben wir für dich Aufgaben in verschiedenen Schwierigkeitsstufen:

  • Mit Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
  • Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit
  • und Aufgaben mit grünem Streifen sind Knobelaufgaben.
Wir wünschen dir viel Erfolg!

Skalarprodukt und Orthogonalität

In diesem Abschnitt beschäftigen wir uns mit dem Skalarprodukt. Dieses ist ein wichtiger Bestandteil, um im weiteren Verlauf den Winkel zwischen zwei Vektoren und zwei Geraden berechnen zu können. Außerdem betrachten wir den Sonderfall, wenn das Skalarprodukt null wird.

Definitionen und Eigenschaften

Definition: Skalarprodukt

Für die beiden Vektoren und kann man das Skalarprodukt berechnen mit .

Als Ergebnis des Skalarprodukts erhälst du keinen Vektor, sondern eine reelle Zahl.


Eigenschaften des Skalarprodukts

Für das Skalarprodukt gilt das...

  • Kommutativgesetz. Es gilt also .
  • Distributivgesetz. Es gilt also .
  • Assoziativgesetz. Es gilt also mit .


Merksatz: Orthogonalität

Zwei Vektoren sind orthogonal zueinander, wenn ihr Skalarprodukt null ist.

"Orthogonal" bedeutet, dass die Vektoren im 90°-Winkel zueinander stehen.

Du hast immer noch keine genaue Vorstellung davon, wie du das Skalarprodukt zweier Vektoren berechnen kannst? Dann schaue dir das Video zum Thema Skalarprodukt an:


Aufgaben

Aufgabe 1: Das Skalarprodukt berechnen

Berechne das Skalarprodukt der beiden Vektoren und . Notiere dein Ergebnis in dem jeweiligen Kästchen.


Aufgabe 2: Skalarprodukt oder Multiplikation?

Entscheide in den folgenden Aufgaben, ob es sich um ein Skalarprodukt oder eine Multiplikation handelt.


Bei der Multiplikation von zwei reellen Zahlen erhältst du wieder eine reelle Zahl. Das Skalarprodukt von zwei Vektoren liefert jedoch nicht einen Vektor, sondern ebenfalls eine reelle Zahl.


Aufgabe 3: Orthogonalität I

Stehen die Vektoren senkrecht (orthogonal) aufeinander?


Aufgabe 4: Orthogonalität II

Bestimme die fehlende Koordinate so, dass die Vektoren und orthogonal zueinander sind.

1

2

3


Aufgabe 5: Lagebeziehungen von Vektoren

Sei und . Lässt sich aus dieser Information die Lagebeziehung von und im zweidimensionalen Raum erschließen?

Das in bedeutet, dass die Vektoren und orthogonal zueinander sind.
und sind parallel zueinander, d.h. .

Gilt dies auch für den dreidimensionalen Raum ?

Du kannst dir einen Körper (z.B. einen Würfel) oder drei Stifte als Hilfe nehmen. Wenn es dir hilft, mache eine kleine Skizze zur Veranschaulichung.
und sind nicht zwangsweise parallel zueinander. Genau genommen weiß man erst einmal gar nichts über ihre Lage. Durch die drei Dimensionen können sie drei unterschiedliche Richtungen haben. Dies lässt sich schon allein durch das Betrachten eines dreidimensionalen Koordinatensystems veranschaulichen.


Aufgabe 6: Beweis des Distributivgesetzes

Beweise das Distributivgesetz, also .

Schreibe zunächst die Vektoren und als Spaltenvektoren und überlege dir, was das Skalarprodukt bedeutet.
Addiere die Vektoren komponentenweise und sortiere die Terme sinnvoll.

1. Schreibe die Vektoren und als Spaltenvektoren.

2. Addiere die Vektoren und komponentenweise.

3. Wende die Formel für das Skalarprodukt an.

4. Multipliziere die Klammern aus (Distributivgesetz der reellen Zahlen).

5. Sortiere die Summen (Kommutativgesetz der reellen Zahlen).

6. Wende die Formel für das Skalarprodukt "rückwärts" an.


Winkel

Im Folgenden schauen wir uns den Umgang mit Winkeln zwischen Vektoren und Geraden an.

Einführung

Definition: Winkel zwischen zwei Vektoren

Die beiden Vektoren und haben den Innenwinkel .

Es gilt:

Stellt man die Formel nach um, erhält man: .

Der Betrag eines Vektors ist im geometrischen Sinne seine Länge. Die Formel zur Berechnung des Betrags lautet:

Wenn du darüber noch mehr wissen möchtest, schaue dir das Lernpfadkapitel Punkte und Vektoren im Raum an.

Du hast immer noch keine genaue Vorstellung davon, wie du den Winkel zwischen zwei Vektoren berechnen kannst? Dann schaue dir das Video an:


Satz: Sonderfälle

Neben dem Sonderfall der Orthogonalität, d.h. mit , gibt es noch zwei weitere:

  • Wenn mit , dann haben die beiden Vektoren die gleiche Richtung.
  • Wenn mit , dann haben die beiden Vektoren entgegengesetzte Richtungen.

Außerdem lässt sich anhand des Skalarproduktes leicht erkennen, ob der Winkel zwischen den beiden Vektoren spitz oder stumpf ist:

  • Wenn das Skalarprodukt positiv ist, handelt es sich um einen spitzen Winkel, d.h. .
  • Wenn das Skalarprodukt negativ ist, handelt es sich um einen stumpfen Winkel, d.h. .

Aufgaben

Winkel zwischen zwei Vektoren

Aufgabe 7: Winkelberechnung

Berechne die Größe des Winkels zwischen den Vektoren und . Du darfst dafür deinen Taschenrechner verwenden. Runde das Ergebnis auf die zweite Nachkommastelle.

1

2

3


Aufgabe 8: Räumliches Vorstellungsvermögen

Wie häufig wird das Skalarprodukt zwischen den (als Vektoren gedeuteten) Zeigern einer Uhr täglich null?

Mache dir zunächst einmal klar, was es für die Uhrzeiger bedeutet, wenn ihr Skalarprodukt null ist.
Wie häufig wird das Skalarprodukt innerhalb von einer Stunde null?

Jede Stunde befinden sich die beiden Uhrzeiger zweimal orthogonal zueinander. Viermal am Tag, nämlich zu den Uhrzeiten 3, 9, 15 und 21 Uhr, gibt es nur den einen rechten Winkel, der die volle Stunde anzeigt.

Damit ergibt sich, dass das Skalarprodukt der beiden Uhrzeiger täglich 48 - 4 = 44 Mal null beträgt.


Winkel zwischen zwei Geraden

In diesem Abschnitt lernst du, wie man den Winkel zwischen zwei Geraden berechnet. Dabei sind die beiden Geraden in Parameterform gegeben.

Wenn du nicht mehr weißt, wie man eine Geradengleichung aufstellt, schau dir das Lernpfadkapitel Geraden im Raum an.


Winkel zwischen zweier Geraden

Auch zwischen zwei Geraden kann man einen Winkel berechnen, sogar dann, wenn sich die Geraden gar nicht schneiden. Um den Winkel zu berechnen, in den zwei Geraden zueinander stehen, betrachtest du lediglich die Richtungsvektoren der Geraden.

Die Formel zur Berechnung des Winkels zwischen zwei Vektoren lautet

.

1. Skalarprodukt der Richtungsvektoren berechnen

2. Länge der Richtungsvektoren berechnen

3. Ergebnisse in die Formel einsetzen

4. Formel nach auflösen

5. ggf. spitzen Winkel berechnen (siehe nächste Box)


Winkel zwischen zwei Geraden
Mit dem Winkel ist immer der spitze Winkel zwischen zwei Geraden und nie der Stumpfwinkel gemeint, d. h. . Dies wird in der Formel nicht berücksichtigt. Stattdessen muss man, falls , noch berechnen. Der gesuchte Winkel ist dann .


Aufgabe 9: Winkel berechnen

Berechne den Winkel zwischen den Geraden und . .



1. Skalarprodukt der Richtungsvektoren berechnen

2. Länge der Richtungsvektoren berechnen

3. Ergebnisse in die Formel einsetzen: Die in Schritt 1 und 2 berechneten Ergebnisse setzt du nun in die Formel ein.

und erhältst somit

4. Formel nach auflösen

5. spitzen Winkel berechnen, da

Der Schnittwinkel zwischen den beiden Geraden und beträgt ca.


Aufgabe 10: Innenwinkel in einem Dreieck

In einem kartesischen Koordinatensystem sind die Punkte , und gegeben.

Bestimme die Größe der Innenwinkel des Dreiecks sowie die Seitenlängen des Dreiecks.


1. Die Richtungsvektoren zwischen den Ortsvektoren bestimmen:

Betrachten wir das Skalarprodukt der Vektoren und : .

Dann wissen wir, wenn das Skalarprodukt null ist, dass die beiden Vektoren und orthogonal zueinander stehen, also .

2. Die Länge der Richtungsvektoren bestimmen:

Diese Längen entsprechen auch den Seitenlängen des Dreiecks .

3. Winkel zwischen den beiden Vektoren und bestimmen:

4. Formel nach auflösen

Da wir bereits wissen, dass , kann der Dreiecksinnenwinkel beim Punkt nicht sein, da die Winkelsumme sonst bereits bei liegen würde. Also berechnen wir den Winkel:

5. spitzen Winkel berechnen

Den dritten Innenwinkel können wir anschließend wie folgt berechnen:

Die Innenwinkel des Dreiecks sind