Digitale Werkzeuge in der Schule/Basiswissen Analysis/Eigenschaften von Funktionen und Funktionsuntersuchung/Monotonie: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
K (Farben korrigiert)
Markierung: 2017-Quelltext-Bearbeitung
 
(62 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
{{Box | 1=Merke | 2=
{{Box | 1=Merke | 2=


Das '''Monotonieverhalten''' einer Funktion
Das '''Monotonieverhalten''' einer Funktion beschreibt den Verlauf des Graphen einer Funktion.
Die Monotonie gibt an, ob eine Funktion fällt, steigt oder konstant ist.


…beschreibt den Verlauf des Graphen einer Funktion. Die Montonie gibt an, ob eine Funktion fällt, steigt oder konstant ist.


Sei <math>h(x)</math> eine Funktion und <math>x_1<x_2</math>


Sei <math>f(x)</math> eine Funktion und <math>x_1<x_2</math>
-      Falls auf einem Intervall <math>h(x_1) < h(x_2)</math> gilt, so ist die Funktion '''streng monoton steigend
 
-      Falls auf einem Intervall <math>f(x_1) < f(x_2)</math> gilt, so ist die Funktion '''streng monoton steigend
'''
'''


-      Falls auf einem Intervall <math>f(x_1) \leq \ f(x_2)</math> gilt, so ist die Funktion '''monoton steigend'''
-      Falls auf einem Intervall <math>h(x_1) \leq \ h(x_2)</math> gilt, so ist die Funktion '''monoton steigend'''


   
   


-      Falls auf einem Intervall <math>f(x_1) > f(x_2)</math> gilt, so ist die Funktion '''streng monoton fallend'''
-      Falls auf einem Intervall <math>h(x_1) > h(x_2)</math> gilt, so ist die Funktion '''streng monoton fallend'''
 
-      Falls auf einem Intervall <math>f(x_1) \geq \ f(x_2)</math> gilt, so ist die Funktion '''monoton fallend'''


-      Falls auf einem Intervall <math>h(x_1) \geq \ h(x_2)</math> gilt, so ist die Funktion '''monoton fallend'''




Wie die einzelnen Eigenschaften am Graphen aussehen, kannst du hier nochmal in der Abbildung sehen!
[[Datei:MonotonieAbbildung.png|links|1200x1200px]]
[[Datei:MonotonieAbbildung.png|links|1200x1200px]]


Zeile 29: Zeile 28:




{{Box| So berechnest du das Monotonieverhalten einer Funktion|
{{Box| 1= Merke: So berechnest du das Monotonieverhalten einer Funktion| 2=


1. Erste Ableitung berechnen
1. Erste Ableitung berechnen
Zeile 39: Zeile 38:
4. Monotonietabelle aufstellen
4. Monotonietabelle aufstellen


5. Vorzeichen der Intervalle berechnen
5. Vorzeichen der Intervalle berechnen (z.B. mit Taschenrechner)


6. Ergebnis interpretieren
6. Ergebnis interpretieren




'''Beispiel: Monotonieverhalten für <math>g(x)=x^2</math> bestimmen | '''
'''Beispiel: Monotonieverhalten für <math>f(x)=x^2</math> bestimmen '''
Zuerst berechnen wir die Ableitung <math>g'(x)=2x</math>. Anschließend berechnen wir die Nullstellen der Ableitung (<math>g'(x)=0</math>) und erhalten durch Umformungen als Nullstelle <math>x=0</math>.
 
Damit sind die zu betrachtenden Intervalle für das Monotonieverhalten <math>(-\infty,0)</math> und <math>(0,+\infty)</math>. Darauffolgend stellen wir eine Monotonietabelle auf und berechnen die Vorzeichen für die Intervalle:
Zuerst berechnen wir die Ableitung <math>f'(x)=2x</math>. Anschließend berechnen wir die Nullstellen der Ableitung (<math>f'(x)=0</math>) und erhalten durch Umformungen als Nullstelle <math>x=0</math>.
[[Datei:Monotonietabelle x^2.jpg|zentriert|rahmenlos|800x800px]]
Damit sind die zu betrachtenden Intervalle für das Monotonieverhalten <math>]-\infty, 0[</math> und <math>]0,+\infty[</math>. Darauffolgend berechnen wir die Vorzeichen für die Intervalle. Dies machen wir indem wir Werte für die Ableitung in den entsprechenden Intervallen ausrechnen. Zum Beispiel liegt <math>-2</math> im Intervall <math>]-\infty, 0[</math> und <math> f'(-2)=-4 <0</math>. Die entsprechenden Werte kannst du in einer Tabelle übersichtlich darstellen:


Aus dem Ergebnis können wir schließen, dass die Funktion für <math>(-\infty,0)</math> streng monoton fallend und für <math>(0,+\infty)</math> streng monoton steigend ist.
[[Datei:Monotonietabelle f(x)=x^2.jpg|links|rahmenlos|900x900px]]
| Beispiel}}


(Legende: <math>\nearrow \widehat{=}</math> streng monoton steigend, <math>\searrow \widehat{=}</math> streng monoton fallend)
Aus dem Ergebnis können wir schließen, dass die Funktion für <math>]-\infty, 0[</math> streng monoton fallend und für <math>]0,+\infty[</math> streng monoton steigend ist.
| 3=Merksatz}}




{{Box | Aufgabe 2: Regenschauer am Aasee |
{{Box | Aufgabe 2: Regenschauer am Aasee |
[[File:2004-09-07-Aasee Münster.jpg|thumb|2004-09-07-Aasee Münster|alt=2004-09-07-Aasee Münster.jpg]]
[[File:2004-09-07-Aasee Münster.jpg|thumb|Aasee Münster|alt=2004-09-07-Aasee Münster.jpg]]
Nach einem starken Regenschauer in Münster steigt der Wasserspiegel im Aasee an. Die Funktion <math>f(x)=\frac{1}{4}x^{3} -\frac{25}{2}x^{2} +144x</math> beschreibt die Zuflussgeschwindigkeit in den ersten 48 Stunden (<math>x=</math> Zeit in Stunden, <math>f(x)=</math> Zuflussgeschwindigkeit in Liter pro Stunde). Wann fließt innerhalb dieser Zeit Wasser zu und wann Wasser ab?  
Nach einem starken Regenschauer in Münster steigt der Wasserspiegel im Aasee an. Die Funktion <math>g(x)=\frac{1}{4}x^{3} -\frac{25}{2}x^{2} +144x</math> beschreibt die Zuflussgeschwindigkeit in den ersten 48 Stunden (<math>x\widehat{=}</math> Zeit in Stunden, <math>g(x)\widehat{=}</math> Zuflussgeschwindigkeit in Liter pro Stunde). Wann fließt innerhalb dieser Zeit Wasser zu und wann Wasser ab?  
{{Lösung versteckt|1=Stelle dir vor, wie sich der Graph verändert, wenn Wasser zu- bzw. abfließt |2=Tipp 1 |3=Schließen}}
 
{{Lösung versteckt|1=Der Graph steigt monton, wenn Wasser dazufließt und fällt monoton, wenn Wasser abfließt. Also musst du die Monotonie der Funktion <math>g(x)</math> berechnen! |2=Tipp 2 |3=Schließen}}


{{Lösung versteckt|1= Die Monotonie zeigt uns an, wo der Graph steigt und fällt. In dem Sachzusammenhang somit wann der Wasserspiegel zu und auch abnimmt.
{{Lösung versteckt|1= Die Monotonie zeigt uns an, wo der Graph steigt und fällt. In dem Sachzusammenhang somit wann der Wasserspiegel zu und auch abnimmt.
Zeile 62: Zeile 67:
Wir berechnen zuerst die Nullstellen der ersten Ableitung:
Wir berechnen zuerst die Nullstellen der ersten Ableitung:


<math>f(x)=\frac{1}{4}x^{3} -\frac{25}{2}x^{2} +144x</math>
<math>g(x)=\frac{1}{4}x^{3} -\frac{25}{2}x^{2} +144x</math>


<math>f'(x)=\frac{3}{4}x^{2} -25x +144x</math>
<math>g'(x)=\frac{3}{4}x^{2} -25x +144</math>


   
   
Zeile 70: Zeile 75:
:Durch Umformungen erhalten wir die möglichen Extremstellen:
:Durch Umformungen erhalten wir die möglichen Extremstellen:


:<math>\frac{3}{4}x^{2}-25x+144x =0\;\;\;\;\;\;\;\;|:\frac{3}{4}</math>
:<math>\frac{3}{4}x^{2}-25x+144 =0\;\;\;\;\;\;\;\;|:\frac{3}{4}</math>


:<math>\;x^{2}-\frac{100}{3}x+192 = 0\;\;\;\;\;\;\;\,|</math>PQ-Formel anwenden
:<math>\;x^{2}-\frac{100}{3}x+192 = 0\;\;\;\;\;\;\;\,|</math>PQ-Formel anwenden
Zeile 78: Zeile 83:
:<math>\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= -\frac{-100}{3}\pm \sqrt{\Big(\frac{-100}{3}\Big)^{2}-\Big(192\Big)}</math>
:<math>\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= -\frac{-100}{3}\pm \sqrt{\Big(\frac{-100}{3}\Big)^{2}-\Big(192\Big)}</math>


:<math>\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\Rightarrow x_{1} = 25,92</math> und <math> x_{2} = 7,40</math><br>
:<math>\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\Rightarrow x_{1} = 25{,}92</math> und <math> x_{2} = 7{,}40</math><br>


Mithilfe der errechneten Intervalle können wir nun die Monotonietabelle aufstellen:
Mithilfe der errechneten Intervalle können wir nun die Monotonietabelle aufstellen. Hierfür gehe wie im Beispiel vor:  


1. Stelle die Intervalle mithilfe deiner errechneten Nullstellen auf


[[Datei:Tabelle 2a.png|links]]
2. Berechne mithilfe deines Taschesrechners die Vorzeichen für die Intervalle


{{Lösung versteckt|1=[[Datei:Tabelle für Aufgabe 2.jpg|links|rahmenlos|900x900px]] |2=Lösung für die Monotonietabelle |3=Schließen}}


 
Antwort: Somit steigt der Wasserspiegel bis zur Stunde 7,4 (seit Messung). Danach fließt das Wasser ca. bis zur 26. Stunde ab. Anschließend steigt der Wasserspiegel wieder (beispielsweise durch einen erneuten Regenschauer) bis zum Ende des Messzeitraumes.
Antwort: Somit fließt Wasser steigt der Wasserspiegel bis zur Stunde 7,4 (seit Messung). Danach fließt es ca. bis zur 26. Stunde ab.




|2=Lösung|3=Schließen}}  
|2=Lösung|3=Schließen}}  
| Farbe= #0000CD| Arbeitsmethode}}
| Arbeitsmethode}}




{{Box | Aufgabe 3: Der"SuperBounce"-Ball &#x2B50; |   
{{Box | Aufgabe 3: Der"SuperBounce"-Ball &#x2B50; |   
Die Firma "SuperBounce" hat einen speziellen Ball erfunden, der eine einzigartige Sprungbewegung beim Wurf auf dem Boden erzeugt. Die Funktion <math>f(x)=\frac{5}{6}x^{4}-a^{2}x^{2}</math> beschreibt annähernd die Flugbahn des Balles, wobei <math>a\in[-3,3]</math> die Härte des Wurfes durch den Werfer beschreibt (<math>x=</math>horizontaler Verlauf des Balles in cm, <math>f(x)=</math>Höhe des Balles in cm). Bestimme wann der Ball in Abhängikeit von <math>a</math> nach oben springt und wann er fällt.  
[[File:Flummi gelb.jpg|thumb|SuperBounce-Ball]]
Die Firma "SuperBounce" hat einen speziellen Ball erfunden, der eine einzigartige Sprungbewegung beim Wurf auf dem Boden erzeugt.  


Die Funktion <math>f_a(x)=\frac{5}{6}x^{4}-a^{2}x^{2}  (x \in [0, 4])</math> beschreibt annähernd die Flugbahn des Balles, wobei <math>a \in [-3, 3]</math> die Härte des Wurfes durch den Werfer beschreibt  (<math>x\widehat{=}</math>Entfernung vom Abwurfort, <math>f_a(x)\widehat{=}</math>Höhe des Balles vom Abwurfort in cm). Bestimme wann der Ball in Abhängikeit von <math>a</math> nach oben springt und wann er fällt.
{{Lösung versteckt|1=Überlege, wie sich das sprunghafte Verhalten des Balles im Graphen erkennen lässt.  |2=Tipp  |3=Schließen}}
{{Lösung versteckt|1=
{{Lösung versteckt|1=


Zeile 103: Zeile 112:
Wir berechnen zuerst die Nullstellen der ersten Ableitung:
Wir berechnen zuerst die Nullstellen der ersten Ableitung:


<math>f(x)=\frac{5}{6}x^{4}-a^{2}x^{2} </math>
<math>f_a(x)=\frac{5}{6}x^{4}-a^{2}x^{2} </math>


<math>f'(x)=\frac{20}{6}x^{3}-2a^{2}x</math>
<math>f_a'(x)=\frac{20}{6}x^{3}-2a^{2}x</math>


   
   
Zeile 117: Zeile 126:
:<math>\Rightarrow x_{1} = 0</math>
:<math>\Rightarrow x_{1} = 0</math>


:<math>\vee.\;\;\;\;\;\; \frac{20}{6}x^{2} - 2a^{2} = 0\;\;\;\;\;\;\,\;|+2a^{2}</math>
:<math>oder\;\;\;\;\;\;\ \frac{20}{6}x^{2} - 2a^{2} = 0\;\;\;\;\;\;\,\;|+2a^{2}</math>


:<math>\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \frac{20}{6}x^{2}= 2a^{2}\;\;\;\;|:\frac{20}{6}</math>
:<math>\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \frac{20}{6}x^{2}= 2a^{2}\;\;\;\;|:\frac{20}{6}</math>
Zeile 125: Zeile 134:
.<math> \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\Rightarrow x_{1} = 0, x_{2} = \frac{\sqrt{15}}{5}a, </math> und <math> x_{3} =-\frac{\sqrt{15}}{5}a </math>
.<math> \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\Rightarrow x_{1} = 0, x_{2} = \frac{\sqrt{15}}{5}a, </math> und <math> x_{3} =-\frac{\sqrt{15}}{5}a </math>


Mithilfe der errechneten Intervalle können wir nun die Monotonietabelle aufstellen:
Mithilfe der errechneten Intervalle können wir nun die Monotonietabelle aufstellen. Hierfür gehe wie im Beispiel vor:  


[[Datei:Tabelle 2b.jpg|links]]
1. Stelle die Intervalle mithilfe deiner errechneten Nullstellen auf (Beachte: Wir betrachten die Funktion nur für Werte <math>(x \in [0, 4]</math>)


2. Berechne mithilfe deines Taschesrechners die Vorzeichen für die Intervalle


{{Lösung versteckt|1= [[Datei:Tabelle Aufgabe 3.jpg|links|rahmenlos|900x900px]] |2=Lösung für die Monotonietabelle |3=Schließen}}


Antwort: Nach Abwurf fällt der Ball zunächst bis er <math>\frac{\sqrt{15}}{5}a</math> cm weit ist. Danch springt wieder hoch bis zum Ende der beobachteten Strecke <math>(x=4)</math>.


|2=Lösung|3=Schließen}}  | Farbe= #0000CD| Arbeitsmethode}}


|2=Lösung|3=Schließen}}
| Arbeitsmethode}}




Zeile 178: Zeile 191:
{{Lösung versteckt|1= Die Nullstellen von <math>h'(x)</math> sind <math>x_1=-3, x_2=-2</math> und <math>x_3=-1</math>.  
{{Lösung versteckt|1= Die Nullstellen von <math>h'(x)</math> sind <math>x_1=-3, x_2=-2</math> und <math>x_3=-1</math>.  


Damit sind die zu betrachtenden Intervalle <math>(-\infty, -3)</math>, <math>(-3, -2)</math>, <math>(-2, -1)</math> und <math>(-1, +\infty)</math>. Nun kannst du auf den verschiedenen Intervallen anhand des Graphen ablesen, ob <math>h'(x)</math> an diesen <math><0</math> oder <math>>0</math> ist.  
Damit sind die zu betrachtenden Intervalle <math>]-\infty, -3[</math>, <math>]-3, -2[</math>, <math>]-2, -1[</math> und <math>]-1, +\infty[</math>. Nun kannst du auf den verschiedenen Intervallen anhand des Graphen ablesen, ob <math>h'(x)</math> an diesen <math><0</math> oder <math>>0</math> ist.  


Für <math>(-\infty, -3)</math> ist <math>h'(x)<0</math>, somit ist <math>h(x)</math> auf diesem Intervall streng monoton fallend.
Für <math>]-\infty, -3[</math> ist <math>h'(x)<0</math>, somit ist <math>h(x)</math> auf diesem Intervall streng monoton fallend.


Für <math>(-3, -2)</math> ist <math>h'(x)>0</math>, somit ist <math>h(x)</math> auf diesem Intervall streng monoton steigend.   
Für <math>]-3, -2[</math> ist <math>h'(x)>0</math>, somit ist <math>h(x)</math> auf diesem Intervall streng monoton steigend.   


Für <math>(-2, -1)</math> ist <math>h'(x)<0</math>, somit ist <math>h(x)</math> auf diesem Intervall streng monoton fallend.
Für <math>]-2, -1[</math> ist <math>h'(x)<0</math>, somit ist <math>h(x)</math> auf diesem Intervall streng monoton fallend.


Für <math>(-1, +\infty)</math> ist <math>h'(x)>0</math>, somit ist <math>h(x)</math> auf diesem Intervall streng monoton steigend. |2=Lösung|3=Schließen}}
Für <math>]-1, +\infty[</math> ist <math>h'(x)>0</math>, somit ist <math>h(x)</math> auf diesem Intervall streng monoton steigend. |2=Lösung|3=Schließen}}




Zeile 217: Zeile 230:




Möglich, weitere Lösungen für die Zeichnung des Graphen sind unter anderem Verschiebungen in Richtung der Ordinate, also nach unten und oben oder auch Streckungen bzw. Stauchungen. |2=Lösung|3=Schließen}} | Farbe= #00CD00 | Arbeitsmethode}}
Möglich, weitere Lösungen für die Zeichnung des Graphen sind unter anderem Verschiebungen in Richtung der Ordinate, also nach unten und oben oder auch Streckungen bzw. Stauchungen. |2=Lösung|3=Schließen}} | Farbe={{Farbe|grün|dunkel}} | Arbeitsmethode}}
 




{{Fortsetzung|weiter=Extrema|weiterlink=Digitale Werkzeuge in der Schule/Basiswissen Analysis/Eigenschaften von Funktionen und Funktionsuntersuchung/Extrema|vorher=zurück|vorherlink=Digitale Werkzeuge in der Schule/Basiswissen Analysis/Eigenschaften von Funktionen und Funktionsuntersuchung}}
{{Fortsetzung|weiter=Extrema|weiterlink=Digitale Werkzeuge in der Schule/Basiswissen Analysis/Eigenschaften von Funktionen und Funktionsuntersuchung/Extrema|vorher=zurück|vorherlink=Digitale Werkzeuge in der Schule/Basiswissen Analysis/Eigenschaften von Funktionen und Funktionsuntersuchung}}

Aktuelle Version vom 12. Juni 2020, 22:52 Uhr

Merke

Das Monotonieverhalten einer Funktion beschreibt den Verlauf des Graphen einer Funktion. Die Monotonie gibt an, ob eine Funktion fällt, steigt oder konstant ist.


Sei eine Funktion und

-      Falls auf einem Intervall gilt, so ist die Funktion streng monoton steigend

-      Falls auf einem Intervall gilt, so ist die Funktion monoton steigend


-      Falls auf einem Intervall gilt, so ist die Funktion streng monoton fallend

-      Falls auf einem Intervall gilt, so ist die Funktion monoton fallend


Wie die einzelnen Eigenschaften am Graphen aussehen, kannst du hier nochmal in der Abbildung sehen!

MonotonieAbbildung.png


Aufgabe 1: Zuordnung von Begriffen zur Monotonie



Merke: So berechnest du das Monotonieverhalten einer Funktion

1. Erste Ableitung berechnen

2. Nullstellen der ersten Ableitung berechnen

3. Intervalle benennen

4. Monotonietabelle aufstellen

5. Vorzeichen der Intervalle berechnen (z.B. mit Taschenrechner)

6. Ergebnis interpretieren


Beispiel: Monotonieverhalten für bestimmen

Zuerst berechnen wir die Ableitung . Anschließend berechnen wir die Nullstellen der Ableitung () und erhalten durch Umformungen als Nullstelle . Damit sind die zu betrachtenden Intervalle für das Monotonieverhalten und . Darauffolgend berechnen wir die Vorzeichen für die Intervalle. Dies machen wir indem wir Werte für die Ableitung in den entsprechenden Intervallen ausrechnen. Zum Beispiel liegt im Intervall und . Die entsprechenden Werte kannst du in einer Tabelle übersichtlich darstellen:

Monotonietabelle f(x)=x^2.jpg

(Legende: streng monoton steigend, streng monoton fallend)

Aus dem Ergebnis können wir schließen, dass die Funktion für streng monoton fallend und für streng monoton steigend ist.


Aufgabe 2: Regenschauer am Aasee
2004-09-07-Aasee Münster.jpg
Aasee Münster

Nach einem starken Regenschauer in Münster steigt der Wasserspiegel im Aasee an. Die Funktion beschreibt die Zuflussgeschwindigkeit in den ersten 48 Stunden ( Zeit in Stunden, Zuflussgeschwindigkeit in Liter pro Stunde). Wann fließt innerhalb dieser Zeit Wasser zu und wann Wasser ab?

Stelle dir vor, wie sich der Graph verändert, wenn Wasser zu- bzw. abfließt
Der Graph steigt monton, wenn Wasser dazufließt und fällt monoton, wenn Wasser abfließt. Also musst du die Monotonie der Funktion berechnen!

Die Monotonie zeigt uns an, wo der Graph steigt und fällt. In dem Sachzusammenhang somit wann der Wasserspiegel zu und auch abnimmt.

Wir berechnen zuerst die Nullstellen der ersten Ableitung:


Durch Umformungen erhalten wir die möglichen Extremstellen:
PQ-Formel anwenden
und

Mithilfe der errechneten Intervalle können wir nun die Monotonietabelle aufstellen. Hierfür gehe wie im Beispiel vor:

1. Stelle die Intervalle mithilfe deiner errechneten Nullstellen auf

2. Berechne mithilfe deines Taschesrechners die Vorzeichen für die Intervalle

Tabelle für Aufgabe 2.jpg
Antwort: Somit steigt der Wasserspiegel bis zur Stunde 7,4 (seit Messung). Danach fließt das Wasser ca. bis zur 26. Stunde ab. Anschließend steigt der Wasserspiegel wieder (beispielsweise durch einen erneuten Regenschauer) bis zum Ende des Messzeitraumes.


Aufgabe 3: Der"SuperBounce"-Ball ⭐
SuperBounce-Ball

Die Firma "SuperBounce" hat einen speziellen Ball erfunden, der eine einzigartige Sprungbewegung beim Wurf auf dem Boden erzeugt.

Die Funktion beschreibt annähernd die Flugbahn des Balles, wobei die Härte des Wurfes durch den Werfer beschreibt (Entfernung vom Abwurfort, Höhe des Balles vom Abwurfort in cm). Bestimme wann der Ball in Abhängikeit von nach oben springt und wann er fällt.

Überlege, wie sich das sprunghafte Verhalten des Balles im Graphen erkennen lässt.

Um zu berechnen, wann der Ball springt und wann er fällt, berechnen wir das Monotonieverhalten der Funktion.

Wir berechnen zuerst die Nullstellen der ersten Ableitung:


Durch Umformungen erhalten wir die möglichen Extremstellen:
Ausklammern
Satz vom Nullprodukt

. und

Mithilfe der errechneten Intervalle können wir nun die Monotonietabelle aufstellen. Hierfür gehe wie im Beispiel vor:

1. Stelle die Intervalle mithilfe deiner errechneten Nullstellen auf (Beachte: Wir betrachten die Funktion nur für Werte )

2. Berechne mithilfe deines Taschesrechners die Vorzeichen für die Intervalle

Tabelle Aufgabe 3.jpg
Antwort: Nach Abwurf fällt der Ball zunächst bis er cm weit ist. Danch springt wieder hoch bis zum Ende der beobachteten Strecke .


Aufgabe 4: Monotonieverhalten anhand der Ableitungsfunktion bestimmen

a) Auf dem Bild siehst du den Graphen einer Ableitungsfunktion . Welche Aussagen kannst du über das Monotonieverhalten von machen?

















Erinnere dich daran, wie du bei der Berechnung des Monotonieverhaltens vorgehst. Welche Aussagen zum Monotonieverhalten liefert dir ?
Die Nullstellen von definieren die verschiedenen Intervalle, in denen das Monotonieverhalten von verschieden ist. Nun kannst du betrachten, auf welchen Intervallen bzw. ist. Welche Aussagen kannst du damit über das Monotonieverhalten von machen?

Die Nullstellen von sind und .

Damit sind die zu betrachtenden Intervalle , , und . Nun kannst du auf den verschiedenen Intervallen anhand des Graphen ablesen, ob an diesen oder ist.

Für ist , somit ist auf diesem Intervall streng monoton fallend.

Für ist , somit ist auf diesem Intervall streng monoton steigend.

Für ist , somit ist auf diesem Intervall streng monoton fallend.

Für ist , somit ist auf diesem Intervall streng monoton steigend.


b) Zeichne nun mithilfe deiner Ergebnisse aus a) den Funktionsgraphen mithilfe deiner Kenntnisse über sein Monotonieverhalten in dein Heft.

Dein Graph könnte in etwa so aussehen:

Graph f(x).jpg












Möglich, weitere Lösungen für die Zeichnung des Graphen sind unter anderem Verschiebungen in Richtung der Ordinate, also nach unten und oben oder auch Streckungen bzw. Stauchungen.