Geometrie im Dreieck/Geheimcode der Geometrie: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 28: | Zeile 28: | ||
{{Lösung versteckt|1=Berechne den fehlenden Winkel, indem du von 180° die anderen beiden Winkel abziehst.|2=Tipp|3=Tipp verbergen}} | {{Lösung versteckt|1=Berechne den fehlenden Winkel, indem du von 180° die anderen beiden Winkel abziehst.|2=Tipp|3=Tipp verbergen}} | ||
{{Lösung versteckt|1=[[Datei:Lösung 2.1 orange.png|zentriert|rahmenlos|500x500px]]|2=Lösung|3=Lösung verbergen}}| Arbeitsmethode | Farbe={{Farbe|orange}}}} | {{Lösung versteckt|1=[[Datei:Lösung 2.1 orange.png|zentriert|rahmenlos|500x500px]]|2=Lösung|3=Lösung verbergen}}| Arbeitsmethode | Farbe={{Farbe|orange}}}} | ||
{{Box | Aufgabe 2.2| Erkenne die Innenwinkel und berechne sie! | {{Box | Aufgabe 2.2|Erkenne die Innenwinkel und berechne sie! | ||
[[Datei:Aufgabe 2.2 pink.png|zentriert|rahmenlos|500x500px]] | [[Datei:Aufgabe 2.2 pink.png|zentriert|rahmenlos|500x500px]] | ||
{{Lösung versteckt|1=α und α' bilden einen rechten Winkel. Es gilt also α+α'=90°. Wie kannst du herausfinden, wie groß α ist?|2=Tipp 1|3=Tipp1 verbergen}} | {{Lösung versteckt|1=α und α' bilden einen rechten Winkel. Es gilt also α+α'=90°. Wie kannst du herausfinden, wie groß α ist?|2=Tipp 1|3=Tipp1 verbergen}} |
Version vom 14. November 2024, 11:30 Uhr
Informationskästchen
Einführung
Stimmt das auch wirklich? Wenn ja, dann müssten die drei Innenwinkel im Dreieck einen gestreckten Winkel ergeben. Das sollte dann also in etwa so aussehen:
Reiße die zwei Winkel α und β deines Dreiecks (auf dem Arbeitsblatt) ab und prüfe, ob man sie an der Spitze zu einem gestreckten Winkel mit 180° anordnen kann.
Aufgabe 1
siehe Arbeitsblatt
Aufgabe 2
Überlege zunächst, was die Innenwinkel und was die Außenwinkel sind.
Beta und Beta' sind Nebenwinkel. Wie kannst du herausfinden, wie groß Beta ist?
Alpha ist der Stufenwinkel zu Alpha'.
Beta ist der Scheitelwinkel zu Beta'.
Gamma ist der Wechselwinkel zu Gamma'.
Aufgabe 3
Aufgabe 4 (Sicherung)