Herta-Lebenstein-Realschule/Lernpfad Kreis und Winkel/1) Kreis: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
(49 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
[[Datei:Schullogo HLR.jpg|rechts|rahmenlos|80x80px]]
{{Fortsetzung|vorher=zurück zur Seite der Herta-Lebenstein-Realschule|vorherlink=Herta-Lebenstein-Realschule}}
{{Navigation|
[[Herta-Lebenstein-Realschule/Lernpfad Kreis und Winkel/1) Kreis|1) Kreis]]<br>
[[Herta-Lebenstein-Realschule/Lernpfad Kreis und Winkel/2) Kreisausschnitt|2) Kreisausschnitt*]]<br>
[[Herta-Lebenstein-Realschule/Lernpfad Kreis und Winkel/2) Winkel|3) Winkel]]<br>
}}
==1. Kreis==
==1. Kreis==
[[Datei: Wallpaper-2574943 1920.png|300px]]
[[Datei: Wallpaper-2574943 1920.png|300px]]
Zeile 5: Zeile 13:
{{Box|Idee|Schaue dich in deiner Umgebung um. Welche kreisförmigen Gegenstände findest du? Notiere.|Unterrichtsidee }}
{{Box|Idee|Schaue dich in deiner Umgebung um. Welche kreisförmigen Gegenstände findest du? Notiere.|Unterrichtsidee }}


{{Box|Übung x: Kreise erkennen|Bearbeite die folgende LearningApp.|Üben}}
<ggb_applet id="tsxwncze" width="600" height="600" border="888888" />
<small>Applet: FLINK-Team</small>
 
{{Box|Übung 1: Kreise erkennen|Bearbeite die folgende LearningApp.|Üben}}
{{LearningApp|app=pcje1vqgc21 |width=100%|height=500px}}
{{LearningApp|app=pcje1vqgc21 |width=100%|height=500px}}


{{Box|Übung x: Aufgaben im Buch|Bearbeite die folgende Aufgabe im Heft. <br>
{{Box|Übung 2: Aufgaben im Buch|Bearbeite die folgende Aufgabe im Heft. <br>
* S. 11, Nr. 4a |Üben}}
* S. 11, Nr. 4a |Üben}}




===1.2 Fachbegriffe im Kreis===
===1.2 Fachbegriffe im Kreis===
<ggb_applet id="ujk9auzs" width="750" height="448" border="888888" />
<small>Applet: FLINK-Team</small>


{{Box|Merke: Der Kreis|
{{Box|Merke: Der Kreis|
Zeile 18: Zeile 31:




{{Box|Übung x: Fachbegriffe im Kreis|Bearbeite die folgenden LearningApps.|Üben}}
{{Box|Übung 3: Fachbegriffe im Kreis|Bearbeite die folgenden LearningApps und das GeoGebra-Quiz.|Üben}}
{{LearningApp|app=puginrvgk21 |width=100%|height=500px}}
{{LearningApp|app=puginrvgk21 |width=100%|height=500px}}
{{LearningApp|app=pijgzv8t521 |width=100%|height=500px}}
{{LearningApp|app=pijgzv8t521 |width=100%|height=500px}}
<ggb_applet id="yh75ppx6" width="750" height="450" border="888888" />
<small>Applet: FLINK-Team</small>


{{Box|Übung x: Radius und Durchmesser bestimmen und berechnen|Bearbeite die folgende Online-Übung.|Üben}}
{{Box|Übung 4: Radius und Durchmesser bestimmen und berechnen|Bearbeite die folgende Online-Übung.|Üben}}
{{h5p-zum|id=15985|height=800px}}
{{h5p-zum|id=15985|height=800px}}


Zeile 28: Zeile 44:
===1.3 Kreise zeichnen===
===1.3 Kreise zeichnen===


{{Box|Erklärvideo x|Schau dir das Video zu ''Kreis mithilfe des Zirkels zeichnen'' an.|Kurzinfo}}
{{Box|Erklärvideo 1|Schau dir das Video zu ''Kreis mithilfe des Zirkels zeichnen'' an.|Kurzinfo}}
{{#ev:youtube|qcaj6sxGD78|800|center}}
{{#ev:youtube|qcaj6sxGD78|800|center}}


{{Box|Info|
{{Box|Info 1|
[[Datei:Der Zirkel.jpg|700px]]|Kurzinfo}}
[[Datei:Der Zirkel.jpg|700px]]|Kurzinfo}}


Zeile 38: Zeile 54:




{{Box|Übung x: Kreis mit dem Zirkel zeichnen|Bearbeite die folgende LearningApp.|Üben}}
{{Box|Übung 5: Kreis mit dem Zirkel zeichnen|Bearbeite die folgende LearningApp.|Üben}}
{{LearningApp|app=pye3jraqn21 |width=100%|height=700px}}
{{LearningApp|app=pye3jraqn21 |width=100%|height=700px}}


{{Box|Übung x: Aufgaben im Buch|Bearbeite die folgenden Aufgaben im Heft. <br>
{{Box|Übung 6: Aufgaben im Buch|Bearbeite die folgenden Aufgaben im Heft. <br>
* S. 11, Nr. 2
* '''S. 11, Nr. 2'''
* S. 11, Nr. 3
* '''S. 11, Nr. 3''' <br> Wähle für die Aufgabenteile '''a)''' und '''b)''' als Einheit 1 cm und wähle für den Aufgabenteil '''c)''' als Einheit 1 Kästchen.
* S. 11, Nr. 5
* '''S. 11, Nr. 5'''
* S. 11, Nr. 6 <span style="color:red"> Aufgabe rauslassen oder als ''Zusatz'' zum Knobeln nehmen?!<br> Sobald man die Lösung (oder einen Tipp) angibt, müssen die Schüler nichts mehr machen... und schreiben wieder nur ab. Und ohne Tipp/ Lösung werden sie es wahrscheinlich nicht hinbekommen.</span> |Üben}}
* '''S. 11, Nr.7''' Nutze das Applet (GeoGebra) unten.
* '''S. 11, Nr. 6''' [Zusatzaufgabe]|Üben}}




Zeile 53: Zeile 70:
* Wandle dm zunächst in cm oder mm um. Denke an die Umrechnungszahl bei Längeneinheiten.
* Wandle dm zunächst in cm oder mm um. Denke an die Umrechnungszahl bei Längeneinheiten.
|2=Tipp zu Nr. 2|3=Tipp ausblenden}}
|2=Tipp zu Nr. 2|3=Tipp ausblenden}}
{{Lösung versteckt|1= <span style="color:red">erforderlich?!</span><br><span style="color:green">nö ;)</span>
|2=Lösung zu Nr. 2|3=Lösung ausblenden}}
<br>
<br>
{{Lösung versteckt|1=[[Datei:Koordinatensystem Merke.jpg|620 px|center|Koordinatensystem_Erinnerung]]|2=Tipp zu Nr. 3 - Wie war das nochmal mit dem Koordinatensystem (= Quadratgitter)?|3=Tipp ausblenden}}
{{Lösung versteckt|1=[[Datei:Koordinatensystem Merke.jpg|620 px|center|Koordinatensystem_Erinnerung]]|2=Tipp zu Nr. 3 - Wie war das nochmal mit dem Koordinatensystem (= Quadratgitter)?|3=Tipp ausblenden}}
Zeile 60: Zeile 75:
* zu a und b) Zeichne zunächst den Mittelpunkt ein und stelle dann den gewünschten Radius bzw. Durchmesser ein. <br>
* zu a und b) Zeichne zunächst den Mittelpunkt ein und stelle dann den gewünschten Radius bzw. Durchmesser ein. <br>
* zu c) Zeichne die Punkte M und P ein. Denke daran, dass M der Mittelpunkt ist. Die Verbindung zwischen M und P ist die Länge des Radius. <br>
* zu c) Zeichne die Punkte M und P ein. Denke daran, dass M der Mittelpunkt ist. Die Verbindung zwischen M und P ist die Länge des Radius. <br>
<span style="color:red">Folgenden Hinweis ergänzen?</span> Wähle für die Aufgabenteile '''a)''' und '''b)''' als Einheit 1 cm und <br>
wähle für den Aufgabenteil '''c)''' als Einheit 1 Kästchen.
|2=Tipp zu Nr. 3|3=Tipp ausblenden}}
|2=Tipp zu Nr. 3|3=Tipp ausblenden}}
{{Lösung versteckt|1= <u>KONTROLLE</u>: Überprüfe jeweils, ob der angegebene Punkt auf der Kreislinie des von dir gezeichneten Kreises liegt. <br>
{{Lösung versteckt|1= <u>KONTROLLE</u>: Überprüfe jeweils, ob der angegebene Punkt auf der Kreislinie des von dir gezeichneten Kreises liegt. <br>
Zeile 70: Zeile 83:
'''a)''' Q(2/10) <br>
'''a)''' Q(2/10) <br>
|2=Lösung zu Nr. 3|3=Lösung ausblenden}}
|2=Lösung zu Nr. 3|3=Lösung ausblenden}}
{{Lösung versteckt|1=<ggb_applet id="qvk5edd4" width="1048" height="570" border="888888" />|2=Lösung zu Nr. 3 (Applet GeoGebra)|3=Lösung ausblenden}}
<br>
<br>
{{Lösung versteckt|1= '''a)''' Zwei Kreise berühren sich nicht, wenn die Entfernung ihrer Mittelpunkte größer ist als die Summe ihrer Radien. <br>
{{Lösung versteckt|1=Prüfapplet: Verschiebe die Mittelpunkte der Kreise so, dass die Bedingungen aus der Aufgabe erfüllt sind.<br>
<ggb_applet id="zcma8hrd" width="770" height="627" border="888888" /><br>
<small>Applet von C. Buß-Haskert</small>
allgemein: Wie können zwei Kreise zueinander liegen?<br>
<ggb_applet id="ymfjpsnm" width="750" height="669" border="888888" />
<small>Applet des FLINK-Teams</small>|2=Tipp zu Nr. 5 (Prüfapplets)|3=Tipp ausblenden}}
 
{{Lösung versteckt|1=
'''a)''' Zwei Kreise berühren sich nicht, wenn die Entfernung ihrer Mittelpunkte größer ist als die Summe ihrer Radien. <br>
'''b)''' Zwei Kreise schneiden sich, wenn die Entfernung ihrer Mittelpunkte kleiner ist als die Summe ihrer Radien. <br>
'''b)''' Zwei Kreise schneiden sich, wenn die Entfernung ihrer Mittelpunkte kleiner ist als die Summe ihrer Radien. <br>
'''c)''' Zwei Kreise berühren sich, wenn die Entfernung ihrer Mittelpunkte der Summe ihrer Radien entspricht.
'''c)''' Zwei Kreise berühren sich, wenn die Entfernung ihrer Mittelpunkte der Summe ihrer Radien entspricht.
|2=Tipp zu Nr. 5|3=Tipp ausblenden}}
|2=Tipp zu Nr. 5|3=Tipp ausblenden}}
{{Lösung versteckt|1= <span style="color:red">muss nicht, oder?!</span>
 
|2=Lösung zu Nr. 5|3=Lösung ausblenden}}
 
{{Lösung versteckt|1=Applet zu Nr. 7<br>
<ggb_applet id="ckcmwnbd" width="842" height="771" border="888888" />
<small>Applet von C.Buß-Haskert</small><br>|2=Applet zu Nr. 7 (GeoGebra)|3=Lösung ausblenden}}
 
{{Lösung versteckt|1=Applet zu Nr. 7d:<br>
<ggb_applet id="caw5zg8w" width="842" height="771" border="888888" />|2=Tipp zu Nr. 7d|3=Lösung ausblenden}}
 
{{Box|1=Nur für Profis: Kreise und Quadrate|2=Gegeben ist ein Kreis mit dem Radius r=3cm. Zeichne diesen Kreis in dein Heft. Zeichne  anschießend ein Quadrat so ein, dass seine vier Eckpunkte auf der Kreislinie liegen.|3=Üben}}
{{Lösung versteckt|Denke daran, den Mittelpunkt des Kreises zu markieren! Die Diagonalen des Quadrates gehen durch den Mittelpunkt. Außerdem stehen sie senkrecht zueinander. So kannst du die vier Eckpunkte mithilfe der Diagonalen finden.|Tipp|Tipp ausblenden}}
 
 
{{Box|Kreise zeichnen mit GeoGebra|Bearbeite die nachfolgenden GeoGebra-Applets. Hier lernst du die verschiedenen Möglichkeiten, wie du mit GeoGebra Kreise zeichnen kannst.|Üben}}
<ggb_applet id="pabffkwv" width="760" height="450" border="888888" />
<small>Applet des FLINK Teams</small> Originallink: https://www.geogebra.org/m/znkjp5ad
<ggb_applet id="hubddm9f" width="760" height="450" border="888888" />
<small>Applet des FLINK Teams</small> Originallink: https://www.geogebra.org/m/sr2xpnfv
<ggb_applet id="wpdy7vq6" width="700" height="500" border="888888" />
<small>Applet des FLINK Teams</small> Originallink: https://www.geogebra.org/m/dxnsxffb
 
<br>
<br>
{{Lösung versteckt|1= <span style="color:red">noch ergänzen</span>
|2=Tipp zu Nr. 6|3=Tipp ausblenden}}
{{Lösung versteckt|1= <span style="color:red">noch ergänzen</span>
|2=Lösung zu Nr. 6|3=Lösung ausblenden}}


===1.4 Muster mit Zirkel zeichnen und ergänzen===
===1.4 Muster mit Zirkel zeichnen und ergänzen===
[[Datei:Compass-4363135 1920.png|500px]]
[[Datei:Compass-4363135 1920.png|500px]]


{{Box|Übung x: Aufgaben im Buch|Bearbeite die folgenden Aufgaben im Heft. <br>
{{Box|Übung 7: Aufgaben im Buch|Bearbeite die folgenden Aufgaben im Heft. <br>
* S. 11, Nr. 8
* S. 11, Nr. 8
* S. 11, Nr. 9
* S. 11, Nr. 9
* S. 11, Nr. 10 [Zusatzaufgabe] |Üben}}
* S. 11, Nr. 10 [Zusatzaufgabe] |Üben}}


{{Lösung versteckt|1= <span style="color:red">noch ergänzen</span>
Für Schnellrechner:<br>
|2=Tipp zu Nr. 8|3=Tipp ausblenden}}
Vervollständige die Kreismuster mit dem Programm GeoGebra.<br>
{{Lösung versteckt|1= <span style="color:red">noch ergänzen</span>
<ggb_applet id="aWbFN55G" width="789" height="500" border="888888" />
|2=Lösung zu Nr. 8|3=Lösung ausblenden}}
<small>Applet von Maria Huber</small>
<br>
{{Lösung versteckt|1= <span style="color:red">noch ergänzen</span>
|2=Tipp zu Nr. 9|3=Tipp ausblenden}}
{{Lösung versteckt|1= <span style="color:red">noch ergänzen</span>
|2=Lösung zu Nr. 9|3=Lösung ausblenden}}
<br>
{{Lösung versteckt|1= <span style="color:red">noch ergänzen</span>  
|2=Tipp zu Nr. 10|3=Tipp ausblenden}}
{{Lösung versteckt|1= <span style="color:red">noch ergänzen</span>
|2=Lösung zu Nr. 10|3=Lösung ausblenden}}


{{Fortsetzung|weiter=2) Kreisausschnitt*|weiterlink=Herta-Lebenstein-Realschule/Lernpfad Kreis und Winkel/2) Kreisausschnitt|vorher= zurück zum Vorwissen|vorherlink=Herta-Lebenstein-Realschule/Lernpfad Kreis und Winkel}}


{{Fortsetzung|weiter=2) Winkel|weiterlink=Herta-Lebenstein-Realschule/Lernpfad Kreis und Winkel/2) Winkel|vorher= zurück zum Vorwissen|vorherlink=Herta-Lebenstein-Realschule/Lernpfad Kreis und Winkel}}
{{Fortsetzung|weiter=3) Winkel|weiterlink=Herta-Lebenstein-Realschule/Lernpfad Kreis und Winkel/2) Winkel|vorher= zurück zum Vorwissen|vorherlink=Herta-Lebenstein-Realschule/Lernpfad Kreis und Winkel}}

Aktuelle Version vom 30. Juli 2024, 12:55 Uhr

Schullogo HLR.jpg

1. Kreis

Wallpaper-2574943 1920.png

1.1 Kreise erkennen

Idee
Schaue dich in deiner Umgebung um. Welche kreisförmigen Gegenstände findest du? Notiere.
GeoGebra

Applet: FLINK-Team


Übung 1: Kreise erkennen
Bearbeite die folgende LearningApp.


Übung 2: Aufgaben im Buch

Bearbeite die folgende Aufgabe im Heft.

  • S. 11, Nr. 4a


1.2 Fachbegriffe im Kreis

GeoGebra

Applet: FLINK-Team


Merke: Der Kreis
Fachbegriffe Kreis.jpg


Übung 3: Fachbegriffe im Kreis
Bearbeite die folgenden LearningApps und das GeoGebra-Quiz.


GeoGebra

Applet: FLINK-Team


Übung 4: Radius und Durchmesser bestimmen und berechnen
Bearbeite die folgende Online-Übung.


1.3 Kreise zeichnen

Erklärvideo 1
Schau dir das Video zu Kreis mithilfe des Zirkels zeichnen an.


Info 1
Der Zirkel.jpg


Merke:
Kreis mit dem Zirkel zeichnen2.jpg


Übung 5: Kreis mit dem Zirkel zeichnen
Bearbeite die folgende LearningApp.


Übung 6: Aufgaben im Buch

Bearbeite die folgenden Aufgaben im Heft.

  • S. 11, Nr. 2
  • S. 11, Nr. 3
    Wähle für die Aufgabenteile a) und b) als Einheit 1 cm und wähle für den Aufgabenteil c) als Einheit 1 Kästchen.
  • S. 11, Nr. 5
  • S. 11, Nr.7 Nutze das Applet (GeoGebra) unten.
  • S. 11, Nr. 6 [Zusatzaufgabe]


ACHTUNG: Achte darauf, ob der Radius oder der Durchmesser angegeben ist!

  • Stelle den Radius mithilfe des Geodreiecks ein, indem du den entsprechenden Abstand zwischen Zirkelspitze und Bleistiftmine einstellst.
  • Wandle dm zunächst in cm oder mm um. Denke an die Umrechnungszahl bei Längeneinheiten.


Koordinatensystem_Erinnerung
  • zu a und b) Zeichne zunächst den Mittelpunkt ein und stelle dann den gewünschten Radius bzw. Durchmesser ein.
  • zu c) Zeichne die Punkte M und P ein. Denke daran, dass M der Mittelpunkt ist. Die Verbindung zwischen M und P ist die Länge des Radius.

KONTROLLE: Überprüfe jeweils, ob der angegebene Punkt auf der Kreislinie des von dir gezeichneten Kreises liegt.
Wenn JA, hast du alles richtig gemacht.
Wenn NEIN, musst du die Aufgabe berichtigen (= noch einmal neu bearbeiten).
a) P(6/8)
b) P(7/12)

a) Q(2/10)
GeoGebra


Prüfapplet: Verschiebe die Mittelpunkte der Kreise so, dass die Bedingungen aus der Aufgabe erfüllt sind.

GeoGebra

Applet von C. Buß-Haskert allgemein: Wie können zwei Kreise zueinander liegen?

GeoGebra
Applet des FLINK-Teams

a) Zwei Kreise berühren sich nicht, wenn die Entfernung ihrer Mittelpunkte größer ist als die Summe ihrer Radien.
b) Zwei Kreise schneiden sich, wenn die Entfernung ihrer Mittelpunkte kleiner ist als die Summe ihrer Radien.

c) Zwei Kreise berühren sich, wenn die Entfernung ihrer Mittelpunkte der Summe ihrer Radien entspricht.


Applet zu Nr. 7

GeoGebra
Applet von C.Buß-Haskert

Applet zu Nr. 7d:

GeoGebra


Nur für Profis: Kreise und Quadrate
Gegeben ist ein Kreis mit dem Radius r=3cm. Zeichne diesen Kreis in dein Heft. Zeichne anschießend ein Quadrat so ein, dass seine vier Eckpunkte auf der Kreislinie liegen.
Denke daran, den Mittelpunkt des Kreises zu markieren! Die Diagonalen des Quadrates gehen durch den Mittelpunkt. Außerdem stehen sie senkrecht zueinander. So kannst du die vier Eckpunkte mithilfe der Diagonalen finden.


Kreise zeichnen mit GeoGebra
Bearbeite die nachfolgenden GeoGebra-Applets. Hier lernst du die verschiedenen Möglichkeiten, wie du mit GeoGebra Kreise zeichnen kannst.
GeoGebra

Applet des FLINK Teams Originallink: https://www.geogebra.org/m/znkjp5ad

GeoGebra

Applet des FLINK Teams Originallink: https://www.geogebra.org/m/sr2xpnfv

GeoGebra

Applet des FLINK Teams Originallink: https://www.geogebra.org/m/dxnsxffb


1.4 Muster mit Zirkel zeichnen und ergänzen

Compass-4363135 1920.png


Übung 7: Aufgaben im Buch

Bearbeite die folgenden Aufgaben im Heft.

  • S. 11, Nr. 8
  • S. 11, Nr. 9
  • S. 11, Nr. 10 [Zusatzaufgabe]

Für Schnellrechner:
Vervollständige die Kreismuster mit dem Programm GeoGebra.

GeoGebra

Applet von Maria Huber