Benutzer:HAG-S15: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
(3 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 9: Zeile 9:
<br />
<br />


<div style="font-size: 15pt; background-color: #97b8f9; text-align: center; color: white; padding: 5px 100px 5px 100px; margin-top:  
<div style="font-size: 15pt; background-color: #97b8f9; text-align: center; color: white; padding: 5px 100px 5px 100px; margin-top: 5px; ">Übung in Learningsnacks</div>


5px; ">Übung in Learningsnacks</div>
 
https://www.learningsnacks.de/share/393248/a9f166a09734eea83f17fe2fe338dd6392883634
[https://www.learningsnacks.de/share/393248/a9f166a09734eea83f17fe2fe338dd6392883634 Ein kleiner Learningsnack von mir]
<br />
<br />


Zeile 34: Zeile 34:


f(x) = 2x + 3 hat eine Steigung von 2(m) und schneidet die y-Achse bei y=3(b). Die Linie steigt um 2 Einheiten(Kästchen) an, wenn x um 1 Einheit zunimmt.
f(x) = 2x + 3 hat eine Steigung von 2(m) und schneidet die y-Achse bei y=3(b). Die Linie steigt um 2 Einheiten(Kästchen) an, wenn x um 1 Einheit zunimmt.
<div style="font-size: 20pt; background-color: #97b8f9; text-align: center; color: white; padding: 5px 100px 5px 100px; margin-top: 5px; "> Unterschiedliche Größen</div>
<br />
<div style="font-size: 15pt">  Größe 15 pt</div>
<div style="font-size: 20pt">  Größe 20 pt</div>
<div style="font-size: 30pt">  Größe 30 pt</div>
<div style= "color: blue; text-align:" > blau </div>

Aktuelle Version vom 4. Mai 2024, 13:59 Uhr

Kimi -- Lineare Funktionen
Asdfghj.png
Wissen zu linearen Funktionen

Lerne etwas dazu


Übung in Learningsnacks


Ein kleiner Learningsnack von mir

Lineare Funktionen

Definition:

Lineare Funktionen sind eine grundlegende Art von mathematischen Funktionen, die in vielen Bereichen der Mathematik, Naturwissenschaften und Ingenieurwissenschaften Anwendung finden.

Anwendungen:

Lineare Funktionen finden sich in vielen realen Anwendungen, wie etwa bei Geschwindigkeits-Zeit-Diagrammen, Kostenfunktionen, Einkommensprognosen, Temperaturverläufen und mehr. Sie bieten eine einfache Möglichkeit, Beziehungen zwischen zwei Variablen zu modellieren.

Lineare Funktionen in einem Koordinatensystem

Stellen wir uns ein Koordinatensystem mit einer x-Achse und einer y-Achse vor. Eine lineare Funktion f(x) ist eine gerade Linie, die durch den Ursprung (0,0) verläuft. Die Steigung m bestimmt den Winkel dieser Linie, während der y-Achsenabschnitt b bestimmt, wo die Linie die y-Achse schneidet.

Demnach ist die Formel also:f(x) = mx + b

Beispiel für Lineare Funktionen in einem Koordinatensystem:

f(x) = 2x + 3 hat eine Steigung von 2(m) und schneidet die y-Achse bei y=3(b). Die Linie steigt um 2 Einheiten(Kästchen) an, wenn x um 1 Einheit zunimmt.