Benutzer:HAG-S8: Unterschied zwischen den Versionen
HAG-S8 (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
HAG-S8 (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 28: | Zeile 28: | ||
Lineare Funktionen finden sich in vielen realen Anwendungen, wie etwa bei Geschwindigkeits-Zeit-Diagrammen, Kostenfunktionen, Einkommensprognosen, Temperaturverläufen und mehr. Sie bieten eine einfache Möglichkeit, Beziehungen zwischen zwei Variablen zu modellieren. | Lineare Funktionen finden sich in vielen realen Anwendungen, wie etwa bei Geschwindigkeits-Zeit-Diagrammen, Kostenfunktionen, Einkommensprognosen, Temperaturverläufen und mehr. Sie bieten eine einfache Möglichkeit, Beziehungen zwischen zwei Variablen zu modellieren. | ||
<u><big>''' | <u><big>'''Lineare Funktionen in einem Koordinatensystem'''</big></u> | ||
Stellen wir uns ein Koordinatensystem mit einer x-Achse und einer y-Achse vor. Eine lineare Funktion f(x) ist eine gerade Linie, die durch den Ursprung (0,0) verläuft. Die Steigung m bestimmt den Winkel dieser Linie, während der y-Achsenabschnitt b bestimmt, wo die Linie die y-Achse schneidet. | Stellen wir uns ein Koordinatensystem mit einer x-Achse und einer y-Achse vor. Eine lineare Funktion f(x) ist eine gerade Linie, die durch den Ursprung (0,0) verläuft. Die Steigung m bestimmt den Winkel dieser Linie, während der y-Achsenabschnitt b bestimmt, wo die Linie die y-Achse schneidet. | ||
Zeile 36: | Zeile 36: | ||
<u><big>'''Beispiel für Lineare Funktionen in einem Koordinatensystem:'''</big></u> | <u><big>'''Beispiel für Lineare Funktionen in einem Koordinatensystem:'''</big></u> | ||
f(x) = 2x + 3 hat eine Steigung von 2 und schneidet die y-Achse bei y = 3. Die Linie steigt um 2 Einheiten an, wenn x um 1 Einheit zunimmt. | f(x) = 2x + 3 hat eine Steigung von 2(m) und schneidet die y-Achse bei y=3(b). Die Linie steigt um 2 Einheiten(Kästchen) an, wenn x um 1 Einheit zunimmt. | ||
<div style="font-size: 20pt; background-color: #97b8f9; text-align: center; color: white; padding: 5px 100px 5px 100px; margin-top: 5px; "> Unterschiedliche Größen</div> | <div style="font-size: 20pt; background-color: #97b8f9; text-align: center; color: white; padding: 5px 100px 5px 100px; margin-top: 5px; "> Unterschiedliche Größen</div> |
Version vom 6. November 2023, 09:10 Uhr
Definition:
Lineare Funktionen sind eine grundlegende Art von mathematischen Funktionen, die in vielen Bereichen der Mathematik, Naturwissenschaften und Ingenieurwissenschaften Anwendung finden.
Anwendungen:
Lineare Funktionen finden sich in vielen realen Anwendungen, wie etwa bei Geschwindigkeits-Zeit-Diagrammen, Kostenfunktionen, Einkommensprognosen, Temperaturverläufen und mehr. Sie bieten eine einfache Möglichkeit, Beziehungen zwischen zwei Variablen zu modellieren.
Lineare Funktionen in einem Koordinatensystem
Stellen wir uns ein Koordinatensystem mit einer x-Achse und einer y-Achse vor. Eine lineare Funktion f(x) ist eine gerade Linie, die durch den Ursprung (0,0) verläuft. Die Steigung m bestimmt den Winkel dieser Linie, während der y-Achsenabschnitt b bestimmt, wo die Linie die y-Achse schneidet.
Demnach ist die Formel also:f(x) = mx + b
Beispiel für Lineare Funktionen in einem Koordinatensystem:
f(x) = 2x + 3 hat eine Steigung von 2(m) und schneidet die y-Achse bei y=3(b). Die Linie steigt um 2 Einheiten(Kästchen) an, wenn x um 1 Einheit zunimmt.