Benutzer:Buss-Haskert/Dreiecke/Umkreis und Inkreis: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
(Seite umbenannt)
Markierung: 2017-Quelltext-Bearbeitung
 
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 1: Zeile 1:
SEITE IM AUFBAU!!
SEITE IM AUFBAU!!
[[Datei:Schullogo HLR.jpg|rechts|rahmenlos|80x80px]]
{{Fortsetzung|vorher=zurück zur Seite der Herta-Lebenstein-Realschule|vorherlink=Herta-Lebenstein-Realschule}}
<br>
{{Navigation|[[Buss-Haskert/Dreiecke|Dreiecke - Vorwissen]]
[[Benutzer:Buss-Haskert/Dreiecke/Winkel im Schnittpunkt von Geraden|1) Winkel im Schnittpunkt von Geraden]]<br>
[[Benutzer:Buss-Haskert/Dreiecke/Winkelsumme im Dreieck|2) Winkelsumme im Dreieck]]<br>
[[Benutzer:Buss-Haskert/Dreiecke/Dreiecksformen|3) Dreiecksformen]]<br>
[[Benutzer:Buss-Haskert/Dreiecke/Kongruenzsätze|4) Konstruktion von Dreiecken - Kongruenzsätze]] }}
<br>
<br>
Im Dreieck gibt es besondere Linien:
Im Dreieck gibt es besondere Linien:

Version vom 17. Juli 2023, 16:35 Uhr

SEITE IM AUFBAU!!

Schullogo HLR.jpg



Im Dreieck gibt es besondere Linien:

Besondere Linien im Dreieck


Linktipp Geogebra In-und Umkreis https://www.geogebra.org/m/kbkn537r

1) Mittelsenkrechte und Umkreis

Mittelsenkrechte
Die Mittelsenkrechte m ist die Gerade, die senkrecht durch den Mittelpunkt einer Strecke verläuft.

Entdecke die Eigenschaften mit dem Applet (erstell von GeoGebra Translation Team German)

GeoGebra


Konstruktion einer Mittelsenkrechten: (Applet erstellt von GeoGebra Teams of use)

GeoGebra


Wo liegt der Ball?

Kannst du das Problem mithilfe von Konstruktionen lösen?

Gehe auf die Seite GeoGebra - Wo liegt der Ball?.


2) Winkelhalbierende und Inkreis

Winkelhalbierende
Die Winkelhalbierende w ist ein Strahl, der den Winkel vom Scheitelpunkt aus halbiert.

Entdecke die Eigenschaften mit dem Applet (erstell von GeoGebra Translation Team German)

GeoGebra


Konstrukion einer Winkelhalbierenden (Applet erstellt von GeoGebra Translation Team German)

GeoGebra


Konstruktion des Inkreises: (Applet erstellt von sozpaed)

GeoGebra







3) Seitenhalbierende und Schwerpunkt

Seitenhalbierende
Die Seitenhalbierende s ist die Strecke, die durch den Mittelpunkt einer Strecke und dem gegenüberliegenden Eckpunkt des Dreiecks verläuft.

Konstruktion der Seitenhalbierenden: (Applet erstellt von sozpaed)

GeoGebra

4) Höhen und Höhenschnittpunkt

Höhen
Eine Höhe h ist die Strecke, die senkrecht auf einer Seite steht und durch den gegenüberliegenden Eckpunkt des Dreiecks verläuft.

Konstruktion des Höhenschnittpunktes: (Applet erstellt von Pöchtrager)

GeoGebra



Eigenschaften des Höhenschnittpunktes:(Applet erstellt von Pöchtrager)

GeoGebra