Digitale Werkzeuge in der Schule/Pyramiden entdecken/Pyramiden vermessen: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 75: | Zeile 75: | ||
| Arbeitsmethode|Farbe={{Farbe|orange}}}} | | Arbeitsmethode|Farbe={{Farbe|orange}}}} | ||
{{Box|Aufgabe 5: Formeln notieren|[[Datei:Grundlagen-bearbeiten.png|30px|middle]] ''' | {{Box|Aufgabe 5: Formeln notieren|Trage die Formeln zur Berechnung rechteckiger und dreieckiger Flächeninhalte ein. | ||
[[Datei:Grundlagen-bearbeiten.png|30px|middle]] '''zurück zum Arbeitsblatt''' | |||
{{Lösung versteckt| | |||
Die Formel zur Berechnung eines rechteckigen Flächeninhaltes lautet: <math>A=a \cdot b</math> | Die Formel zur Berechnung eines rechteckigen Flächeninhaltes lautet: <math>A=a \cdot b</math> | ||
Zeile 194: | Zeile 198: | ||
{{Box | Aufgabe 8: Oberflächeninhalte verschiedener Pyramiden berechnen | | {{Box | Aufgabe 8: Oberflächeninhalte verschiedener Pyramiden berechnen | | ||
[[Datei:Grundlagen-bearbeiten.png|30px|middle]] ''' | [[Datei:Grundlagen-bearbeiten.png|30px|middle]] '''zurück zum Arbeitsblatt''' | ||
| Arbeitsmethode | Farbe={{Farbe|orange}} }} | | Arbeitsmethode | Farbe={{Farbe|orange}} }} | ||
Zeile 409: | Zeile 413: | ||
{{Box|Aufgabe 12: | {{Box|Aufgabe 12: Nikolaus-Häuschen| | ||
[[Datei:Grundlagen-bearbeiten.png|30px|middle]] ''' | [[Datei:Grundlagen-bearbeiten.png|30px|middle]] '''zurück zum Arbeitsblatt''' | ||
{{Lösung versteckt|Die Dachfläche besteht aus vier Dreiecken, von denen die jeweils gegenüberliegenden gleich groß sind.|Tipp|Tipp verbergen}} | {{Lösung versteckt|Die Dachfläche besteht aus vier Dreiecken, von denen die jeweils gegenüberliegenden gleich groß sind.|Tipp|Tipp verbergen}} |
Version vom 28. November 2022, 16:13 Uhr
Wiederholung
Rechteckigen Flächeninhalt berechnen
Dreieckigen Flächeninhalt berechnen
Oberflächeninhalte berechnen
Wie du bereits im vorherigen Kapitel entdeckt hast, lässt sich die Oberfläche einer Pyramide in ein Netz überführen, indem man die Pyramide aufklappt und die Seitenflächen auf eine Ebene faltet.
Das so entstandene Netz besteht somit aus einer Grundfläche und den dreieckigen Seitenflächen, welche zusammen die sogenannte Mantelfläche bilden.
Den Flächeninhalt des gesamten Netzes nennt man den Oberflächeninhalt . Du kannst dir diese Größe als Menge an Verpackung vorstellen, die du benötigst, um das pyramidenförmige Objekt zu umschließen.
Im Falle einer quadratischen Pyramide, welche ihre Spitze über der Mitte ihrer Grundfläche hat, ergibt sich für die Grundfläche die Fläche eines Quadrates und für ihre Mantelfläche die Flächeninhalte von vier gleich großen Dreiecken.
a)
Grundfläche :
Seitenfläche :
Oberflächeninhalt :
b)
Seitenfläche :
Seitenfläche :
Mantelfläche :
c)
Grundfläche :
Seitenfläche :
Seitenfläche :
Mantelfläche :
Oberflächeninhalt :
d)
Seitenfläche :
Mantelfläche :
Pyramiden schätzen
Vertiefen und Vernetzen