Digitale Werkzeuge in der Schule/Pyramiden entdecken/Pyramiden vermessen: Unterschied zwischen den Versionen
Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 22: | Zeile 22: | ||
{{Lösung versteckt|1=Die Formel zur Berechnung eines rechteckigen Flächeninhaltes lautet: <math>A=a \cdot b</math>|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}} | {{Lösung versteckt|1=Die Formel zur Berechnung eines rechteckigen Flächeninhaltes lautet: <math>A=a \cdot b</math>|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}} | ||
{{Lösung versteckt|1=<math>A=4 \text{ cm} \cdot 3 \text{ cm} =12 \text{ | {{Lösung versteckt|1=<math>A=4 \text{ cm} \cdot 3 \text{ cm} =12 \text{ cm}^{2}</math>|2=Lösung anzeigen|3=Lösung verbergen}} | ||
| Arbeitsmethode |Farbe={{Farbe|orange}} }} | | Arbeitsmethode |Farbe={{Farbe|orange}} }} | ||
Zeile 32: | Zeile 32: | ||
{{Lösung versteckt|1=Die Formel zur Berechnung eines dreieckigen Flächeninhaltes lautet: <math>A=\tfrac{g \cdot h}{2}</math>|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}} | {{Lösung versteckt|1=Die Formel zur Berechnung eines dreieckigen Flächeninhaltes lautet: <math>A=\tfrac{g \cdot h}{2}</math>|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}} | ||
{{Lösung versteckt|1=<math>A= \tfrac{4 \text{ cm} \cdot 6 \text{ cm}}{2} =12 \text{ | {{Lösung versteckt|1=<math>A= \tfrac{4 \text{ cm} \cdot 6 \text{ cm}}{2} =12 \text{ cm}^{2}</math>|2=Lösung anzeigen|3=Lösung verbergen}}| Arbeitsmethode |Farbe={{Farbe|orange}} }} | ||
{{Box|1=Info|2=In den Aufgaben 3 und 4 hast du noch einmal die Möglichkeit, das Bestimmen von recht- und dreieckigen Flächeninhalten zu üben. Solltest du dich schon sicher fühlen, kannst du auch direkt mit Aufgabe 5 weitermachen.|3=Kurzinfo}} | {{Box|1=Info|2=In den Aufgaben 3 und 4 hast du noch einmal die Möglichkeit, das Bestimmen von recht- und dreieckigen Flächeninhalten zu üben. Solltest du dich schon sicher fühlen, kannst du auch direkt mit Aufgabe 5 weitermachen.|3=Kurzinfo}} |
Version vom 28. November 2022, 09:46 Uhr
Wiederholung
Rechteckigen Flächeninhalt berechnen
Dreieckigen Flächeninhalt berechnen
Oberflächeninhalte berechnen
Wie du bereits im vorherigen Kapitel entdeckt hast, lässt sich die Oberfläche einer Pyramide in ein Netz überführen, indem man die Pyramide aufklappt und die Seitenflächen auf eine Ebene faltet.
Das so entstandene Netz besteht somit aus einer Grundfläche und den dreieckigen Seitenflächen, welche zusammen die sogenannte Mantelfläche bilden.
Den Flächeninhalt des gesamten Netzes nennt man den Oberflächeninhalt . Du kannst dir diese Größe als Menge an Verpackung vorstellen, die du benötigst, um das pyramidenförmige Objekt zu umschließen.
Im Falle einer quadratischen Pyramide, welche ihre Spitze über der Mitte ihrer Grundfläche hat, ergibt sich für die Grundfläche die Fläche eines Quadrates und für ihre Mantelfläche die Flächeninhalte von vier gleich großen Dreiecken.
a)
Grundfläche :
Seitenfläche :
Oberflächeninhalt :
b)
Seitenfläche :
Seitenfläche :
Mantelfläche :
c)
Grundfläche :
Seitenfläche :
Seitenfläche :
Mantelfläche :
Oberflächeninhalt :
d)
Seitenfläche :
Mantelfläche :
Pyramiden schätzen
Vertiefen und Vernetzen