Ziehe den Schieberegler im nachfolgenden GeoGebra-Applet und bearbeite die folgenden Aufgaben im Heft:
a) Gib die jeweilige Seitenlänge und den Flächeninhalt der Quadrate an bis zum Flächeninhalt 100 Kästchen.
b) Ein Quadrat hat den Flächeninhalt 169 Kästchen. Wie lang ist eine Seite?
c) Kannst du Quadrate mit dem Flächeninhalt von 2 Kästchen (3 Kästchen) zeichnen?
4.2 (Quadrat)wurzel - Definition
(Quadrat)wurzel - Definition
Die Quadratwurzel aus einer positiven Zahl b ist die positive Zahl a, die mit sich selbst multipliziert b ergibt:
Berechne zunächst die Fläche des Rechtecks A = a∙b
a) A = 18∙8 = 144
Nun überlege, welche Seitenlänge das Quadrat mit dem Flächeninhalt A = 144 (m²) besitzt:
144 = a² | = a
12 = a
Zähle die Quadratflächen, die zur Oberfläche gehören.
Lösung zu a) 22 Quadrate
b) 50 Quadrate
4.3 Irrationale Zahlen - Bestimmen von Quadratwurzeln
Quadratwurzeln von Zahlen, die keine Quadratzahl sind, lassen sich nur annähern.
So liegt z.B. der Wert von im Intervall [1;2], also zwischen und 1 und 2, denn 1² < 2 < 2².
Dieses Intervall kannst du verkleinern, um den Wert von auf mehrere Nachkommastellen anzunähern. Das nachfolgende Applet verdeutlicht dieses Vorgehen, die sogenannte Intervallschachtelung:
(Applet von W. Wengler)
hat unendlich viele Nachkommaziffern, die nie periodisch werden. Man kann diese Zahl also nicht als Bruch darstellen.
Irrationale Zahlen
Irrationale Zahlen sind Zahlen, die unendlich viele Nachkommastellen haben, die nicht periodisch werden. Quadratwurzeln aus Zahlen, die keine Quadratzahlen sind, sind irrational.
Den meisten ist es zwar egal, doch ist irrational...
Du kannst durch Annäherung feststellen, zwischen welchen natürlichen Zahlen die Quadratwurzel einer Zahl liegt: liegt zwischen den Zahlen 5 und 6, denn
Wenn du die Kantenlänge eines Würfels mit einem Volumen von 8cm³ bestimmen möchtest, muss du die Zahl finden, die dreimal mit sich selbst multipliziert 8 ergibt:
222 = 23 = 8, die Kubikwurzel ist dann wie folgt definiert: =2
Die 3. Wurzel aus 8 ist 2. Die 3. Wurzel heißt auch Kubikwurzel (von engl. "cube" = Würfel).
Kubikwurzel - 3. Wurzel
Die 3. Wurzel einer Zahl a ist die Zahl b, die dreimal mit sich selbst malgenommen die Zahl a ergibt: bbb = a, also gilt =b.
Cookies helfen uns bei der Bereitstellung von ZUM Projektwiki. Durch die Nutzung von ZUM Projektwiki erklärst du dich damit einverstanden, dass wir Cookies speichern.