Benutzer:Buss-Haskert/Zinseszins: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
K (Tipp ergänzt)
Markierung: 2017-Quelltext-Bearbeitung
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 103: Zeile 103:
&nbsp;&nbsp; = 7500 ∙ 1,015<sup>5</sup><br>
&nbsp;&nbsp; = 7500 ∙ 1,015<sup>5</sup><br>
&nbsp;&nbsp; = 8079,63 (€)|2=Tipp zu b)|3=Verbergen}}
&nbsp;&nbsp; = 8079,63 (€)|2=Tipp zu b)|3=Verbergen}}
=== Umstellen der Zinseszinsformel ===
Formel umstellen nach K<sub>0</sub><br>
K<sub>n</sub> = K<sub>0</sub> ∙ q<sup>n</sup> &nbsp;&#124;:q<sup>n</sup><br>
<math>\tfrac{K_n}{q^n}</math><br>
<br>
K<sub>n</sub> = K<sub>0</sub> ∙ q<sup>n</sup> &nbsp;&#124;:K<sub>0</sub><br>
<math>\tfrac{K_n}{K^0}</math> = q<sup>n</sup> &nbsp;&#124;
Formel umstellen nach q:<br>
{{Box|Übung 3 (online)|Löse auf der Seite [https://mathe.aufgabenfuchs.de/zins/zinseszins.shtml '''Aufgabenfuchs'''] die Aufgaben
* 4
* 5
* 6
* 7
* 8
* 9|Üben}}

Version vom 9. Februar 2021, 12:28 Uhr

SEITE IM AUFGABAU!!

Wachstum - Zinseszins

Zinseszins

In diesem Lernpfad lernst du

  • was Zinseszinsen sind,
  • welche Bedeutung Zinseszinsen für Kapitalanlage haben,
  • welcher Unterschied zwischen der Geldanlage mit und ohne Zinseszinsen besteht.

Einstieg: Sparschwein

Deine Oma schenkt dir zu deiner Geburt 1000€. Nun muss sie entscheiden, wie sie das Geld für dich angelegt. Die Bank bietet ihr einen Zinssatz von 5% an. Berechne, wie viel Geld du mit 18 Jahren bekämst. Übertrage die beiden Möglichkeiten in dein Heft und fülle die Tabelle aus.


1. Möglichkeit:
Sie lässt sich die Zinsen jedes Jahr auszahlen und spart sie in einem Sparschwein.

K = 1000€; p% = 5% = 0,05

Jahre Guthaben(€)
0 1000
1 1050
2 1100
3 1150
... ...
18 ...
2. Möglichkeit:
Sie lässt die Zinsen auf dem Sparbuch und fügt sie so jährlich dem Kapital zu.

K = 1000€; p% = 5% = 0,05

Jahre Guthaben(€)
0 1000
1 1050
2 1102,50
3 1157,625
... ...
18 ...

Kannst du eine Formel angeben, mit der du den Endbetrag berechnen kannst?

Kapital nach 18 Jahren:
K18 = ...
Kapital nach 18 Jahren:
K18 = ...


Hefteintrag: Zinseszins

Zinseszins bedeutet, dass ein Startkapital Zinsen erwirtschaftet und diese Zinsen werden dem Vermögen am Jahresende gutgeschrieben. So werden in Zukunft diese Zinsen ebenfalls verzinst.
Das Kapital nach n Jahren wird mit der Formel
Kn = K0 ∙ (1+p%)n
      = K0 ∙ qn    mit q = 1+p%

Beispiel:
geg: K0 = 1000€ (Startkapital, Null Jahre); p% = 5% = 0,05; q = 1 + p% = 1 + 0,05 = 1,05; n = 18 Jahre
ges: Kn (Kapital nach n Jahren)

K18 = 1000 ∙ 1,0518
      = 2406,62 (€)

Nach 18 Jahren ist das Kapital auf 2406,62 € angewachsen.

Bei diesem Kapitalwachstum handelt es sich um ein sogenanntes exponentielles Wachstum.


Übung 1 (online)

Löse auf der Seite Aufgabenfuchs die Aufgaben

  • 1
  • 2
  • 3


Übung 2

a) Ein Kapital von 2000€ wird zu einem Zinssatz von 2% angelegt. Berechne das Kapital nach 4 Jahren.

b) Ein Vermögen von 7500€ wird zu einem Zinssatz von 1,5% angelegt (mit Zinseszins). Berechne das Kapital nach 5 Jahren.
Vergleiche deine Lösung mit dem Beispiel a) auf S. 73 oben.

geg:K = 7500€; p% = 1,5% = 0,015, also q = 1 + 0,015 =1,015; n = 5
K5 = K0 ∙ q5
   = 7500 ∙ 1,0155

   = 8079,63 (€)

Umstellen der Zinseszinsformel

Formel umstellen nach K0
Kn = K0 ∙ qn  |:qn


Kn = K0 ∙ qn  |:K0
= qn  |

Formel umstellen nach q:

Übung 3 (online)

Löse auf der Seite Aufgabenfuchs die Aufgaben

  • 4
  • 5
  • 6
  • 7
  • 8
  • 9