Digitale Werkzeuge in der Schule/Fit für VERA-8/Stochastik: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 818: | Zeile 818: | ||
{{Lösung versteckt|1='''a)''' Markus benötigt eine 1, 2 oder 3, um in das Haus zu kommen. | {{Lösung versteckt|1='''a)''' Markus benötigt eine 1, 2 oder 3, um in das Haus zu kommen. | ||
Da der Würfel | Da der Würfel sechs Zahlen aufweist, beträgt die Wahrscheinlichkeit für jede einzelne Zahl <math>\tfrac{1}{6}</math> und somit gilt mit der Summenregel, da Markus drei der sechs Zahlen würfeln kann: | ||
P("Markus würfelt eine der | P("Markus würfelt eine der drei Zahlen") = <math>\tfrac{1}{6}</math> + <math>\tfrac{1}{6}</math> + <math>\tfrac{1}{6}</math> = <math>\tfrac{3}{6}</math> = <math>\tfrac{1}{2}</math> | ||
Zeile 827: | Zeile 827: | ||
Da Julia nur zwei der sechs Zahlen würfeln kann, gilt: | Da Julia nur zwei der sechs Zahlen würfeln kann, gilt: | ||
P("Julia würfelt eine der zwei | P("Julia würfelt eine der zwei Zahlen") = <math>\tfrac{1}{6}</math> + <math>\tfrac{1}{6}</math> = <math>\tfrac{2}{6}</math> = <math>\tfrac{1}{3}</math> | ||
Zeile 838: | Zeile 838: | ||
Dann kann Julia mit den Zahlen 4, 5 und 6 beim darauffolgenden Zug ins Haus kommen. | Dann kann Julia mit den Zahlen 4, 5 und 6 beim darauffolgenden Zug ins Haus kommen. | ||
P("Julia würfelt eine der drei Zahlen") = <math>\tfrac{1}{6}</math> + <math>\tfrac{1}{6}</math> + <math>\tfrac{1}{6}</math> = <math>3 \cdot</math> <math>\tfrac{1}{6}</math> = <math>\tfrac{3}{6}</math> = <math>\tfrac{1}{2}</math> | |||
Die Wahrscheinlichkeit beim nächsten Zug ins Haus zu kommen beträgt dann sowohl bei Markus als auch bei Julia <math>\tfrac{1}{2}</math>. | Die Wahrscheinlichkeit beim nächsten Zug ins Haus zu kommen beträgt dann sowohl bei Markus als auch bei Julia <math>\tfrac{1}{2}</math>. | ||
Zeile 848: | Zeile 846: | ||
Dann kann Julia mit den Zahlen 3, 4 und 5 beim darauffolgenden Zug ins Haus kommen: | Dann kann Julia mit den Zahlen 3, 4 und 5 beim darauffolgenden Zug ins Haus kommen: | ||
P("Julia würfelt eine der drei Zahlen") = <math>3 \cdot</math> <math>\tfrac{1}{6}</math> = <math>\tfrac{1}{2}</math> | |||
Die Wahrscheinlichkeit beim nächsten Zug ins Haus zu kommen beträgt dann sowohl bei Markus als auch bei Julia <math>\tfrac{1}{2}</math>. | Die Wahrscheinlichkeit beim nächsten Zug ins Haus zu kommen beträgt dann sowohl bei Markus als auch bei Julia <math>\tfrac{1}{2}</math>. | ||
Zeile 858: | Zeile 854: | ||
Dann kann Julia mit den Zahlen 2, 3 und 4 beim darauffolgenden Zug ins Haus kommen: | Dann kann Julia mit den Zahlen 2, 3 und 4 beim darauffolgenden Zug ins Haus kommen: | ||
P("Julia würfelt eine der drei Zahlen") = <math>\tfrac{1}{6}</math> = <math>\tfrac{1}{2}</math> | |||
<math>3 \cdot</math> | |||
Die Wahrscheinlichkeit beim nächsten Zug ins Haus zu kommen beträgt dann sowohl bei Markus als auch bei Julia <math>\tfrac{1}{2}</math>. | Die Wahrscheinlichkeit beim nächsten Zug ins Haus zu kommen beträgt dann sowohl bei Markus als auch bei Julia <math>\tfrac{1}{2}</math>. | ||
Zeile 868: | Zeile 862: | ||
Dann kann Julia mit den Zahlen 1, 2 und 3 beim darauffolgenden Zug ins Haus kommen: | Dann kann Julia mit den Zahlen 1, 2 und 3 beim darauffolgenden Zug ins Haus kommen: | ||
P("Julia würfelt eine der drei Zahlen") = <math>3 \cdot</math> <math>\tfrac{1}{6}</math> = <math>\tfrac{1}{2}</math> | |||
Die Wahrscheinlichkeit beim nächsten Zug ins Haus zu kommen beträgt dann sowohl bei Markus als auch bei Julia <math>\tfrac{1}{2}</math>. | Die Wahrscheinlichkeit beim nächsten Zug ins Haus zu kommen beträgt dann sowohl bei Markus als auch bei Julia <math>\tfrac{1}{2}</math>. | ||
Wenn also beide einmal an der Reihe waren ohne ins Haus zu setzen, ist die Wahrscheinlichkeit dann für beide gleich beim nächsten Zug ins Haus zu kommen. Sie beträgt <math>\tfrac{1}{2}</math>. | Wenn also beide einmal an der Reihe waren ohne ins Haus zu setzen, ist die Wahrscheinlichkeit dann für beide gleich beim nächsten Zug ins Haus zu kommen. Sie beträgt <math>\tfrac{1}{2}</math>. | ||
|2=Lösung b)|3=Lösung}} | |2=Lösung b)|3=Lösung}} | ||
| Arbeitsmethode | Farbe={{Farbe|grün|dunkel}} }} | | Arbeitsmethode | Farbe={{Farbe|grün|dunkel}} }} |
Version vom 29. November 2020, 13:17 Uhr
Absolute und relative Häufigkeit
Zufallsexperimente
Laplace-Experimente