Herta-Lebenstein-Realschule/Lernpfad Rechnen mit Dezimalbrüchen/2) Dezimalbrüche multiplizieren: Unterschied zwischen den Versionen
K (Lösungen verstecken) Markierung: 2017-Quelltext-Bearbeitung |
K (Box ergänzt) Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 64: | Zeile 64: | ||
{{Lösung versteckt|1=Beispiel für den Überschlag: a) 30 · 7 = 210;b) 0,03 · 12 = 0,36; d) 170 · 0,1 = 17; e) 80· 0,05 = 4; f) 0,7 · 800 = 560 {{Lösung versteckt|Lösungen zum Vergleichen (Du musst ausführliche Rechnungen im Heft notiert haben!) a) 195,02 b) 0,342 c) 1505,856 d) 14,9468 e) 3,5196 f) 574,585|Lösungen Nr. 6|Verbergen}}|2=Nr.6 Mögliche Überschläge und Lösungen (zum Vergleichen)|3=Verbergen}} | {{Lösung versteckt|1=Beispiel für den Überschlag: a) 30 · 7 = 210;b) 0,03 · 12 = 0,36; d) 170 · 0,1 = 17; e) 80· 0,05 = 4; f) 0,7 · 800 = 560 {{Lösung versteckt|Lösungen zum Vergleichen (Du musst ausführliche Rechnungen im Heft notiert haben!) a) 195,02 b) 0,342 c) 1505,856 d) 14,9468 e) 3,5196 f) 574,585|Lösungen Nr. 6|Verbergen}}|2=Nr.6 Mögliche Überschläge und Lösungen (zum Vergleichen)|3=Verbergen}} | ||
Wo finden wir weitere Beispiele zur Multiplikation von Dezimalbrüchen im Sport? | {{Box|Wo finden wir weitere Beispiele zur Multiplikation von Dezimalbrüchen im Sport?| | ||
Wir gehen schwimmen. Das Becken ist 28,5 m lang und 21,6 m breit. Welche Fläche hat der Beckenboden? | Wir gehen schwimmen. Das Becken ist 28,5 m lang und 21,6 m breit. Welche Fläche hat der Beckenboden?|Icon=hdg-ball01}} | ||
{{Box|Übung 4|Berechne S. 130 Nr. 16, 17 und 22. Denke an eine übersichtliche Darstellung. | {{Box|Übung 4|Berechne S. 130 Nr. 16, 17 und 22. Denke an eine übersichtliche Darstellung. |
Version vom 13. Mai 2020, 15:35 Uhr
2) Dezimalbrüche multiplizieren
Eine weitere Frage, die wir zu Beginn an die Weitsprungergebnisse beim Sportabzeichentag gestellt haben, war folgende:
Wenn du den besten Sprung betrachtest, wie weit kämst du dann mit 25 Sprüngen für die gesamte Klasse?
Nehmen wir noch einmal die Ergebnisse von Tom: 3m; 3,2m und 3,95m.
Die Rechnung heißt hier also: 3,95 m · 25
Um dies beantworten zu können, müssen wir Dezimalbrüche multiplizieren können. Dies lernst du auf dieser Seite.
Beginnen wir mit einer leichteren Frage:
Das kannst du sicher im Kopf berechnen. Fällt dir etwas auf?
2.1 Dezialbrüche mit 10, 100, 1000 multiplizieren
Schau das Erklärvideo on:
2.2 Dezimalbrüche multiplizieren
Wie können wir nun die Frage beantworten, wie weit die gesamte Klasse mit dem besten Sprung von Tom gesprungen wäre?
Wir müssen 3,95m · 25 rechnen.
Idee 2: Wir können Brüche multiplizieren, dies übertragen wir nun:
Geht das auch mit zwei Dezimalbrüchen?
Das Video fasst die Regel noch einmal zusammen:
Zeichne die Skizze in dein Heft und beschrifte! Flächeninhalt eines Rechtecks A = a · b. Multipliziere schriftlich, denke an das Komma im Ergebnis.
Lösung zum Vergleichen (Du musst ausführliche Rechnungen im Heft notiert haben!) a) 5,4 m² b) 15,5 m²Berechne zunächst das Volumen des Beckens (des Quaders) mit V = a · b · c , wobei c hier die Wassertiefe 1,60m ist. Lösung zum Vergleichen (Du musst ausführliche Rechnungen in deinem Heft haben!)
Wassermenge 130 m³; Kosten 234 €Berechne zunächst das Volumen des abgeflossenen Wassers mit V = a · b · c , wobei c hier 40cm = 0,4m die Höhe ist, um die der Wasserspiegel gesunken ist. Lösung zum Vergleichen (Du musst ausführliche Rechnunge in deinem Heft haben!) abgelaufenes Wasser 32,5 m³
Kosten 58,50€Berechne die Fläche, die gefliest werden muss. Dies ist die Oberfläche eines Quaders, aber ohne die obere Fläche (die Deckfläche fehlt. Rechne schrittweise. Lösung zum Vergleichen (Du musst ausführliche Rechnungen in deinem Heft haben!)
Boden 81,25 m²; Wände 45 m² + 23,4 m², also Gesamtfläche 149,65 m²