Herta-Lebenstein-Realschule/Lernpfad Rechnen mit Dezimalbrüchen/2) Dezimalbrüche multiplizieren: Unterschied zwischen den Versionen
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 31: | Zeile 31: | ||
Wir müssen 3,95m · 25 rechnen. | Wir müssen 3,95m · 25 rechnen. | ||
{{Lösung versteckt|Idee 1: Wandle 3,95 m eine kleinere Einheit um, berechne und wandle zurück in m.|Idee 1|Verbergen}} | {{Lösung versteckt|Idee 1: Wandle 3,95 m in eine kleinere Einheit um, berechne und wandle zurück in m um.|Idee 1|Verbergen}} | ||
Idee 2: Wir können Brüche multiplizieren, dies übertragen wir nun: | Idee 2: Wir können Brüche multiplizieren, dies übertragen wir nun: | ||
<div class="grid"> | <div class="grid"> |
Version vom 26. April 2020, 15:18 Uhr
Eine weitere Frage, die wir zu Beginn an die Weitsprungergebnisse beim Sportabzeichentag gestellt haben, war folgende:
Wenn du den besten Sprung betrachtest, wie weit kämst du dann mit 25 Sprüngen für die gesamte Klasse?
Nehmen wir noch einmal die Ergebnisse von Tom: 3m; 3,2m und 3,95m.
Die Rechnung heißt hier also: 3,95 m · 25
Um dies beantworten zu können, müssen wir Dezimalbrüche multiplizieren können. Dies lernst du auf dieser Seite.
Beginnen wir mit einer leichteren Frage:
Das kannst du sicher im Kopf berechnen. Fällt dir etwas auf?
Schau das Erklärvideo on:
Wie können wir nun die Frage beantworten, wie weit die gesamte Klasse mit dem besten Sprung von Tom gesprungen wäre?
Wir müssen 3,95m · 25 rechnen.
Idee 2: Wir können Brüche multiplizieren, dies übertragen wir nun:
Geht das auch mit zwei Dezimalbrüchen?
Das Video fasst die Regel noch einmal zusammen:
Beispiel für den Überschlag: a) 30 · 7 = 210;
b) 0,03 · 12 = 0,36; d) 170 · 0,1 = 17Wo finden wir weitere Beispiele zur Multiplikation von Dezimalbrüchen im Sport?
Wir gehen schwimmen. Das Becken ist 28,5 m lang und 21,6 m breit. Welche Fläche hat der Beckenboden?