Benutzer:Stoll-Gym10Erfurt/Mathematik10/Potenzfunktionen: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Markierung: Quelltext-Bearbeitung 2017
Markierung: Quelltext-Bearbeitung 2017
 
(43 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
=== Einstieg ins Thema ===
=== Einstieg ins Thema ===
{{Box-spezial
{{Box-spezial
|Titel= Wiederholung Potenzgesetze
|Titel= Wiederholung Potenzgesetze
Zeile 9: Zeile 8:
|Icon= <span class="brainy hdg-music02"></span>    
|Icon= <span class="brainy hdg-music02"></span>    
}}
}}
{{Box-spezial
{{Box-spezial
|Titel= Lernpfad aus Österreich
|Titel= Lernpfad aus Österreich
Zeile 19: Zeile 17:
|Icon= <span class="brainy hdg-head-exclamation"></span>    
|Icon= <span class="brainy hdg-head-exclamation"></span>    
}}
}}
=== Potenzgesetze ===
=== Potenzgesetze ===
{{Box-spezial
{{Box-spezial
Zeile 33: Zeile 30:
|Icon= <span class="brainy hdg-head-exclamation"></span>    
|Icon= <span class="brainy hdg-head-exclamation"></span>    
}}
}}
{{Box|Übung: Finde passende Pärchen.<br/>
==== LearningApps ====
{{Box-spezial
|Titel= Übung
|Inhalt= Finde passende Pärchen.
{{LearningApp|app= 23868790|width=100%|height=500px}}
{{LearningApp|app= 23868790|width=100%|height=500px}}
|
|Farbe= #0077dd
|Arbeitsmethode}}
|Hintergrund= #A8DF4A
 
|Icon= <span class=" brainy hdg-pin "></span>
{{Box|Wissensquiz<br/>
}}
{{Box-spezial
|Titel= Wissensquiz
|Inhalt=
{{LearningApp|app=1400451 |width=100%|height=500px}}
{{LearningApp|app=1400451 |width=100%|height=500px}}
|
|Farbe= #0077dd
|Üben}}
|Hintergrund= #A8DF4A
 
|Icon= <span class=" brainy hdg-pin "></span>
{{Box| Potenzgesetze wörtlich formulieren. <br/>
}}
{{LearningApp|app= 17968755|width=100%|height=500px}}
{{Box-spezial
|
|Titel= Potenzgesetze wörtlich formulieren.
|Üben}}
|Inhalt=
 
{{LearningApp|app= 17968755|width=100%|height=630px}}
{{Box|Hier findest Du eine ganze Sammlung von Übungen.<br/>
|Farbe= #0077dd
{{LearningApp|app= 9391946|width=100%|height=500px}}
|Hintergrund= #A8DF4A
|
|Icon= <span class=" brainy hdg-pin "></span>
|Üben}}
}}
 
{{Box-spezial
|Titel= Hier findest Du eine ganze Sammlung von Übungen.
|Inhalt=
{{LearningApp|app= 9391946|width=100%|height=650px}}
|Farbe= #0077dd
|Hintergrund= #A8DF4A
|Icon= <span class=" brainy hdg-pin "></span>
}}
==== Übungsaufgaben ====
==== Übungsaufgaben ====
{{Box|Aufgabe 1|2=
{{Box-spezial
<math>Berechne \qquad 3^{-4}.</math>
|Titel= Aufgabe 1
|Inhalt= <math>Berechne \qquad 3^{-4}.</math>
{{Lösung versteckt|1 = <math>\frac {1}{81}</math>}}
{{Lösung versteckt|1 = <math>\frac {1}{81}</math>}}
|3=Üben}}
|Farbe= #0077dd
{{Box|Aufgabe 2|2=
|Hintergrund= #54ff9f
<math>Berechne \qquad (-2)^5.</math><br/>
|Icon= <span class="brainy hdg-pin"></span>
}}
{{Box-spezial
|Titel= Aufgabe 2
|Inhalt= <math>Berechne \qquad (-2)^5.</math>
{{Lösung versteckt|1 = <math>-32</math>}}
{{Lösung versteckt|1 = <math>-32</math>}}
|3=Üben}}
|Farbe= #0077dd
{{Box|Aufgabe 3|2=
|Hintergrund= #54ff9f
<math>Berechne \qquad (\sqrt{3}-\sqrt{27}) \cdot \sqrt{3}.</math><br/>
|Icon= <span class="brainy hdg-pin"></span>
}}
{{Box-spezial
|Titel= Aufgabe 3
|Inhalt= <math>Berechne \qquad (\sqrt{3}-\sqrt{27}) \cdot \sqrt{3}.</math>
{{Lösung versteckt|1 = <math>-6</math>}}
{{Lösung versteckt|1 = <math>-6</math>}}
|3=Üben}}
|Farbe= #0077dd
{{Box|Aufgabe 4|2=
|Hintergrund= #54ff9f
<math>Berechne \qquad a^{\frac{2}{3}} \cdot \sqrt[3]{ a} .</math><br/>
|Icon= <span class="brainy hdg-pin"></span>
}}
{{Box-spezial
|Titel= Aufgabe 4
|Inhalt= <math>Berechne \qquad a^{\frac{2}{3}} \cdot \sqrt[3]{ a} .</math>
{{Lösung versteckt|1 = <math>a</math>}}
{{Lösung versteckt|1 = <math>a</math>}}
|3=Üben}}
|Farbe= #0077dd
{{Box|Aufgabe 5|2=
|Hintergrund= #54ff9f
<math>Berechne \qquad 6^{\frac{2}{5}} \cdot 6^{-\frac{4}{10}} .</math><br/>
|Icon= <span class="brainy hdg-pin"></span>
}}
{{Box-spezial
|Titel= Aufgabe 5
|Inhalt= <math>Berechne \qquad 6^{\frac{2}{5}} \cdot 6^{-\frac{4}{10}} .</math>
{{Lösung versteckt|1 = <math>1</math>}}
{{Lösung versteckt|1 = <math>1</math>}}
|3=Üben}}
|Farbe= #0077dd
<br/><br/>
|Hintergrund= #54ff9f
 
|Icon= <span class="brainy hdg-pin"></span>
 
}}
{{Box|Aufgabe 6|2=
{{Box-spezial
<big>''Gib als eine Potenz an und berechne.''</big><br/><br/>
|Titel= Aufgabe 6
|Inhalt= <big>''Gib als eine Potenz an und berechne.''</big><br/>
<math> 7^8 : 7^6</math>
<math> 7^8 : 7^6</math>
{{Lösung versteckt|1 = <math>49</math>}}
{{Lösung versteckt|1 = <math>49</math>}}
|3=Üben}}
|Farbe= #0077dd
{{Box|Aufgabe 7|2=
|Hintergrund= #54ff9f
<big>''Gib als eine Potenz an und berechne.''</big><br/><br/>
|Icon= <span class="brainy hdg-pin"></span>
}}
{{Box-spezial
|Titel= Aufgabe 7
|Inhalt= <big>''Gib als eine Potenz an und berechne.''</big><br/>
<math> \frac{3^4}{3^4 \cdot 3^2}</math>
<math> \frac{3^4}{3^4 \cdot 3^2}</math>
{{Lösung versteckt|1 = <math>\frac{1}{9}</math>}}
{{Lösung versteckt|1 = <math>\frac{1}{9}</math>}}
|3=Üben}}
|Farbe= #0077dd
{{Box|Aufgabe 8|2=
|Hintergrund= #54ff9f
<big>''Gib als eine Potenz an und berechne.''</big><br/><br/>
|Icon= <span class="brainy hdg-pin"></span>
}}
{{Box-spezial
|Titel= Aufgabe 8
|Inhalt= <big>''Gib als eine Potenz an und berechne.''</big><br/>
<math> \begin{pmatrix} a^{-\frac{4}{9}} \end{pmatrix}^{\frac{3}{4}}</math>
<math> \begin{pmatrix} a^{-\frac{4}{9}} \end{pmatrix}^{\frac{3}{4}}</math>
{{Lösung versteckt|1 = <math>a^{-\frac{1}{3}} = \frac{1}{\sqrt[3]{ a}}</math>}}
{{Lösung versteckt|1 = <math>a^{-\frac{1}{3}} = \frac{1}{\sqrt[3]{ a}}</math>}}
|3=Üben}}
|Farbe= #0077dd
{{Box|Aufgabe 9|2=
|Hintergrund= #54ff9f
<big>''Gib als eine Potenz an und berechne.''</big><br/><br/>
|Icon= <span class="brainy hdg-pin"></span>
}}
{{Box-spezial
|Titel= Aufgabe 9
|Inhalt= <big>''Gib als eine Potenz an und berechne.''</big><br/>
<math> \sqrt[6]{9^7} : \sqrt[3]{9^2} </math>
<math> \sqrt[6]{9^7} : \sqrt[3]{9^2} </math>
{{Lösung versteckt|1 = <math> \sqrt{9}=3</math>}}
{{Lösung versteckt|1 = <math> \sqrt{9}=3</math>}}
|3=Üben}}
|Farbe= #0077dd
{{Box|Aufgabe 10|2=
|Hintergrund= #54ff9f
<big>''Gib als eine Potenz an und berechne.''</big><br/><br/>
|Icon= <span class="brainy hdg-pin"></span>
}}
{{Box-spezial
|Titel= Aufgabe 10
|Inhalt= <big>''Gib als eine Potenz an und berechne.''</big><br/>
<math> 4,2^{3} : 0,7^{3}</math>
<math> 4,2^{3} : 0,7^{3}</math>
{{Lösung versteckt|1 = <math>6^3 = 216</math>}}
{{Lösung versteckt|1 = <math>6^3 = 216</math>}}
|3=Üben}}
|Farbe= #0077dd
|Hintergrund= #54ff9f
|Icon= <span class="brainy hdg-pin"></span>
}}


=== Die Potenzfunktionen ===
=== Die Potenzfunktionen ===
Zeile 115: Zeile 162:
|Icon= <span class="brainy hdg-file02"></span>    
|Icon= <span class="brainy hdg-file02"></span>    
}}
}}
 
==== Eigenschaften der Potenzfunktionen <math> y=f(x)=x^n </math>====
=== Eigenschaften der Potenzfunktionen <math> y=f(x)=x^n </math>===
 
{{Box-spezial
{{Box-spezial
|Titel= Einstiegsvideo
|Titel= Einstiegsvideo
Zeile 124: Zeile 169:
|Farbe= #0077dd
|Farbe= #0077dd
|Hintergrund= #A8DF4A
|Hintergrund= #A8DF4A
|Icon= <span class="brainy hdg-lamp2"></span>    
|Icon= <span class="brainy hdg-screen01"></span>    
}}
}}
{{Box-spezial
{{Box-spezial
|Titel= Übung
|Titel= Übung
Zeile 136: Zeile 180:
|Icon= <span class="brainy hdg-lamp2"></span>    
|Icon= <span class="brainy hdg-lamp2"></span>    
}}
}}
 
{{Box-spezial
{{Box|Übung 1: Zuordnungsübung|Versuche nun Funktionsgleichungen ihren Grafen zu zuordnen.<br/>
|Titel= Übung - Zuordnungsübung
|Inhalt= Versuche nun Funktionsgleichungen ihren Grafen zu zuordnen.
{{LearningApp|app=2151503 |width=100%|height=500px}}
{{LearningApp|app=2151503 |width=100%|height=500px}}
|Üben}}
|Farbe= #0077dd
 
|Hintergrund= #A8DF4A
=== Eigenschaften der Funktion <math> y=f(x)=a \cdot x^n </math>===
|Icon= <span class=" brainy hdg-pin "></span>
 
}}
==== Eigenschaften der Funktion <math> y=f(x)=a \cdot x^n </math>====
{{Box-spezial
{{Box-spezial
|Titel= Überblicksvideo
|Titel= Überblicksvideo
Zeile 149: Zeile 195:
|Farbe= #0077dd
|Farbe= #0077dd
|Hintergrund= #A8DF4A
|Hintergrund= #A8DF4A
|Icon= <span class="brainy hdg-lamp2"></span>    
|Icon= <span class="brainy hdg-screen01"></span>    
}}
}}
{{Box|Übung 2: Eigenschaften von Potenzfunktionen|Gib für die einzelnen Funktionen ihre Eigenschaften an. Beachte den Hinweis am Anfang der Übung<br/>
{{Box-spezial
|Titel= Übung
|Inhalt= Eigenschaften von Potenzfunktionen. Gib für die einzelnen Funktionen ihre Eigenschaften an. Beachte den Hinweis am Anfang der Übung.
{{LearningApp|app=2545877 |width=100%|height=850px}}
{{LearningApp|app=2545877 |width=100%|height=850px}}
|Üben}}
|Farbe= #0077dd
<br/>
|Hintergrund= #A8DF4A
|Icon= <span class=" brainy hdg-pin "></span>
}}
{{Box-spezial
{{Box-spezial
|Titel= Zusammenfassung im Video
|Titel= Zusammenfassung im Video
|Inhalt= In diesem Video fasst Simon Brückner (auf Vimeo) viel Wissenswertes zusammen. <br/>
|Inhalt= In diesem Video fasst Simon Brückner (auf Vimeo) viel Wissenswertes zusammen. <br/>
[https://vimeo.com/397597966 Das Video]<br/>
[https://vimeo.com/397597966 Das Video]<br/>
|Farbe= #0077dd
|Hintergrund= #A8DF4A
|Icon= <span class="brainy brainy hdg-screen01"></span>    
}}
=== Zwei kleine Wissensüberprüfungen ===
{{Box-spezial
|Titel= Multiple Choice Test
|Inhalt= Beantworte die Fragen.<br/>
[https://www.geogebra.org/m/mgammbnv#material/hpgwdxas Test1]<br/>
|Farbe= #0077dd
|Hintergrund= #A8DF4A
|Icon= <span class="brainy hdg-head-exclamation"></span>    
}}
<br/>
{{Box-spezial
|Titel= Zuordnungsübung
|Inhalt= Ordne die richtige Funktionsgleichung zu.<br/>
[https://www.geogebra.org/m/mgammbnv#material/f7khh3ew Test2]<br/>
|Farbe= #0077dd
|Farbe= #0077dd
|Hintergrund= #A8DF4A
|Hintergrund= #A8DF4A
|Icon= <span class="brainy hdg-head-exclamation"></span>    
|Icon= <span class="brainy hdg-head-exclamation"></span>    
}}
}}
=== Lösen von Potenzgleichungen ===
=== Lösen von Potenzgleichungen ===
{{Box-spezial
|Titel= Anzahl der Lösungen von Potenzgleichungen
|Inhalt=<big> Gleichungen der Form <math> x^n=a </math> bezeichnen wir als Potenzgleichungen<br />
Dabei unterscheiden wir zunächst zwischen geraden und ungeraden Exponenten n. <br/><br/>
Für '''gerade''' <math> n  \isin \N^* </math>hat die Gleichung <math> x^n=a </math> die Lösungen
# <math>\sqrt[n]{a} \; und -\sqrt[n]{a}, wenn \; a > 0 </math><br/>
# <math>0, wenn \; a = 0 </math><br/>
# <math> keine \; Lösung, wenn \; a < 0 </math><br/>
Für '''ungerade''' <math> n  \isin \N^* </math>hat die Gleichung <math> x^n=a </math> die Lösungen
# <math>\sqrt[n]{a}, wenn \; a > 0 </math><br/>
# <math> 0, wenn \; a = 0 </math> <br/>
# <math>-\sqrt[n]{a}, wenn \; a < 0 </math><br/> </big>
|Farbe= #0077dd
|Hintergrund= #A8DF4A
|Icon= <span class="brainy hdg-lamp2"></span>    
}}
{{Box-spezial
|Titel= <big> ''' Beispiele ''' </big>
|Inhalt=
'''Fall 1: a > 0''' <br/>
<math>\qquad x^4=3 </math><br/>
''Lösungen''<br/>
<math>\qquad x_1= \sqrt[4]{3}, denn (\sqrt[4]{3})^4=3 </math> <br/>
<math>\qquad x_2= -\sqrt[4]{3}, denn (-\sqrt[4]{3})^4=3</math> <br/><br/>
'''Fall 2: a = 0''' <br/>
<math>\qquad x^4=0 </math><br/>
''Lösung''<br/>
<math>\qquad x_1=0 </math><br/><br/>
'''Fall 3: a < 0''' <br/>
<math>\qquad x^4=-3 </math><br/>
''Diese Gleichung hat keine Lösung''<br/><br/><br/>
|Farbe= #0077dd
|Hintergrund= #54ff9f
|Icon= <span class="brainy hdg-pin"></span>
}}
{{Box-spezial
|Titel= Anzahl der Lösungen von Potenzgleichungen
|Inhalt=<big> Nun betrachten wir Gleichungen der Form <math> x^{\frac{m}{n}}=a .</math> 
<br/>
Bei positiven Exponenten <math> \frac{m}{n}</math> ist die Gleichung nur für x  &ge; 0 definiert. Es ist D = <math>\{x|x \geq 0 \} </math>.
Bei negativen Exponenten <math> \frac{m}{n} </math> ist D = <math>\{ x|x > 0 \}</math>.<br/>
<br/> </big>
<big> Da <math> \frac{m}{n} </math> stets eine nichtnegative Zahl ist hat die Gleichung für a < 0 keine Lösung.</big>
|Farbe= #0077dd
|Hintergrund= #A8DF4A
|Icon= <span class="brainy hdg-lamp2"></span>    
}}
{{Box-spezial
|Titel= <big> ''' Beispiele ''' </big>
|Inhalt=
'''Fall 1: x &ge; 0''' <br/>
<math>\qquad x^\frac{1}{3}=4 </math><br/>
<math>\qquad (x^\frac{1}{3})^3=4^3 </math><br/>
<math>\qquad x = 64 </math><br/><br/>
'''Fall 2: x > 1''' <br/>
<math>\qquad 2 \cdot (x-1)^{-\frac{2}{3}}+1=9 </math><br/>
<math>\qquad 2 \cdot (x-1)^{-\frac{2}{3}}=8 </math><br/>
<math>\qquad (x-1)^{-\frac{2}{3}} = 4 </math><br/>
<math>\qquad [(x-1)^{-\frac{2}{3}}]^{-\frac{3}{2}}=4^{-\frac{3}{2}} </math><br/>
<math>\qquad x-1 = \frac{1}{8} </math><br/>
<math>\qquad x = \frac{9}{8} </math><br/><br/>
|Farbe= #0077dd
|Hintergrund= #54ff9f
|Icon= <span class="brainy hdg-pin"></span>
}}
{{Box-spezial
{{Box-spezial
|Titel= Überblicksvideo
|Titel= Überblicksvideo
Zeile 173: Zeile 306:
|Icon= <span class="brainy hdg-lamp2"></span>    
|Icon= <span class="brainy hdg-lamp2"></span>    
}}
}}
{{Box|Übung 1:|Anzahl der Lösungen gesucht<br/>
<br/>
==== LearningApps ====
{{Box-spezial
|Titel= Übung 1
|Inhalt= Anzahl der Lösungen gesucht
{{LearningApp|app=19100265 |width=100%|height=500px}}
{{LearningApp|app=19100265 |width=100%|height=500px}}
|Üben}}
|Farbe= #0077dd
<br/>
|Hintergrund= #A8DF4A
{{Box|Übung 2:|Richtige Reihenfolge angeben<br/>
|Icon= <span class=" brainy hdg-pin "></span>
}}
{{Box-spezial
|Titel= Übung 2
|Inhalt= Richtige Reihenfolge angeben
{{LearningApp|app=13384411 |width=100%|height=650px}}
{{LearningApp|app=13384411 |width=100%|height=650px}}
|Üben}}
|Farbe= #0077dd
<br/>
|Hintergrund= #A8DF4A
 
|Icon= <span class=" brainy hdg-pin "></span>
}}
==== Beispiele ====
==== Beispiele ====
{{Box|
{{Box-spezial
<big>'' Löse die Gleichung.''</big><br/>
|Titel= <big>'' Löse die Gleichung.''</big>
|2=<big>''' <math>5x^3-20 = 7-3x^3 </math>'''</big><br/>
|Inhalt=  
{{Lösung versteckt|1= <math>2x^3=27 </math>|2=1. Schritt|3=schließen}}
<big>''' <math>5x^3-20 = 7-3x^3 </math>'''</big><br/>
{{Lösung versteckt|1= <math>x^3=13,5 </math>|2=2. Schritt|3=schließen}}
{{Lösung versteckt|1= <math>8x^3=27 </math>|2=1. Schritt|3=schließen}}
{{Lösung versteckt|1=<math>x \approx 2,38 </math>}}
{{Lösung versteckt|1= <math>x^3=\frac{27}{8}</math>|2=2. Schritt|3=schließen}}
|3=Üben}}<br/>
{{Lösung versteckt|1=<math>x =\frac{3}{2}</math>}}
{{Box|
|Farbe= #0077dd
<big>'' Löse die Gleichung.''</big><br/>
|Hintergrund= #54FF9F
|2=<big>''' <math>5x^4 + 32 = 3x^4 </math>'''</big><br/>
|Icon= <span class="brainy hdg-pin"></span>
}}
{{Box-spezial
|Titel= <big>'' Löse die Gleichung.''</big>
|Inhalt=  
<big>''' <math>5x^4 + 32 = 3x^4 </math>'''</big><br/>
{{Lösung versteckt|1= <math>2x^4=-32 </math>|2=1. Schritt|3=schließen}}
{{Lösung versteckt|1= <math>2x^4=-32 </math>|2=1. Schritt|3=schließen}}
{{Lösung versteckt|1= <math>x^4=-16 </math>|2=2. Schritt|3=schließen}}
{{Lösung versteckt|1= <math>x^4=-16 </math>|2=2. Schritt|3=schließen}}
{{Lösung versteckt|1=keine Lösungen}}
{{Lösung versteckt|1=keine Lösungen}}
|3=Üben}}<br/>
|Farbe= #0077dd
|Hintergrund= #54FF9F
|Icon= <span class="brainy hdg-pin"></span>
}}

Aktuelle Version vom 8. April 2025, 14:10 Uhr

Einstieg ins Thema

    Wiederholung Potenzgesetze

Höre Dir zum Einstieg mal den Song zu den Potenzgesetzen an


    Lernpfad aus Österreich

Wer sich tiefgründig in die Potenzgesetze einarbeiten will, klickt den Link an und arbeitet dort die Seiten durch.
Lernpfad Potenzgesetze

Der Pfad enthält auch Material zum neuen Thema Potenzfunktionen

Potenzgesetze

    Potenzgesetze

Für alle a, b und für alle n, m gilt:







LearningApps

Übung

Finde passende Pärchen.

Wissensquiz
Potenzgesetze wörtlich formulieren.
Hier findest Du eine ganze Sammlung von Übungen.

Übungsaufgaben

Aufgabe 1

Aufgabe 2

Aufgabe 3

Aufgabe 4

Aufgabe 5

Aufgabe 6

Gib als eine Potenz an und berechne.

Aufgabe 7

Gib als eine Potenz an und berechne.

Aufgabe 8

Gib als eine Potenz an und berechne.

Aufgabe 9

Gib als eine Potenz an und berechne.

Aufgabe 10

Gib als eine Potenz an und berechne.

Die Potenzfunktionen

    Allgemeines

Eine Potenzfunktion hat allgemein folgende Funktionsgleichung im einfachsten Fall:

Oft tritt als Exponent die 2 auf, dann handelt es sich um eine quadratische Funktion .
Wichtige Sonderfälle sind aber auch die beiden Funktionen (konstante Funktion) und (lineare Funktion).

Wurzelfunktionen lassen sich ebenfalls als Potenzfunktion mit rationalem Exponenten auffassen.

Eigenschaften der Potenzfunktionen

    Einstiegsvideo

Hier erfährst Du wie Potenzfunktionen mit ganzzahligem Exponenten aussehen.


    Übung

In dieser Übung kannst Du den Inhalt des Videos selbst noch einmal ausprobieren.
Du kannst auch den Exponenten nicht ganzzahlig setzen.

GeoGebra

Übung - Zuordnungsübung

Versuche nun Funktionsgleichungen ihren Grafen zu zuordnen.

Eigenschaften der Funktion

    Überblicksvideo

Hier werden wesentliche Eigenschaften erklärt.


Übung

Eigenschaften von Potenzfunktionen. Gib für die einzelnen Funktionen ihre Eigenschaften an. Beachte den Hinweis am Anfang der Übung.

    Zusammenfassung im Video

In diesem Video fasst Simon Brückner (auf Vimeo) viel Wissenswertes zusammen.

Das Video

Zwei kleine Wissensüberprüfungen

    Multiple Choice Test

Beantworte die Fragen.

Test1


    Zuordnungsübung

Ordne die richtige Funktionsgleichung zu.

Test2

Lösen von Potenzgleichungen

    Anzahl der Lösungen von Potenzgleichungen

Gleichungen der Form bezeichnen wir als Potenzgleichungen
Dabei unterscheiden wir zunächst zwischen geraden und ungeraden Exponenten n.

Für gerade hat die Gleichung die Lösungen




Für ungerade hat die Gleichung die Lösungen




Beispiele

Fall 1: a > 0

Lösungen



Fall 2: a = 0

Lösung


Fall 3: a < 0

Diese Gleichung hat keine Lösung


    Anzahl der Lösungen von Potenzgleichungen

Nun betrachten wir Gleichungen der Form
Bei positiven Exponenten ist die Gleichung nur für x ≥ 0 definiert. Es ist D = . Bei negativen Exponenten ist D = .

Da stets eine nichtnegative Zahl ist hat die Gleichung für a < 0 keine Lösung.
Beispiele

Fall 1: x ≥ 0




Fall 2: x > 1







    Überblicksvideo

Lösungen von Potenzgleichungen.



LearningApps

Übung 1

Anzahl der Lösungen gesucht

Übung 2

Richtige Reihenfolge angeben

Beispiele

Löse die Gleichung.


Löse die Gleichung.


keine Lösungen