Benutzer:L.hodankov/lineare Funktonen/Steigung
Diese Seite des Lernpfades wurde teilweise übernommen von der Seite Herta-Lebenstein-Realschule https://projekte.zum.de/wiki/Herta-Lebenstein-Realschule/Lineare_Funktionen_im_Aktiv-Urlaub . Der Autor ist Buss-Haskert. Diese Seite wurde veröffentlicht unter der Lizenz CC BY SA.
Herzlichen Dank!
SEITE IM AUFBAU !!!
Die Steigung m
Anschaulich vorstellen kannst du dir, dass die Funktion steigt, wenn die Gerade von unten nach oben verläuft.
Fällt die Funktion, "fällt" die Gerade von oben nach unten.
Um zu unterscheiden, ob eine Gerade steil oder flach verläuft (steigt oder fällt), beobachte in der nächsten Simulation den Maulwurf, der seinen Maulwurfshügel hinaufklettert.
Damit du einen Eindruck von der Bedeutung der Parameter m (Steigung) der Funktionsgleichung linearer Funktionen
f(x) = mx + b erhältst, verändere in der folgenden Animation mithilfe des Schieberegler die Größe von m.
Wenn die Steigung m steil ist, muss der Maulwurf sehr mutig sein!
Fülle den nachfolgenden Lückentext aus und übertrage ihn in deine Mappe (Goodnotes):
Die Steigung m einer proportionalen (linearen) Funktion f(x) = mx bestimmt den Verlauf der Geraden:
Für m > 0 steigt die Gerade und für m < 0 fällt die Gerade.
Die Gerade steigt flach für 0 < m < 1 und steil für m > 1.
Die Gerade fällt flach für -1 < m < 0 und steil für m < -1.