Benutzer:Buss-Haskert/Exponentialfunktion

Aus ZUM Projektwiki

SEITE IM AUFBAU, NUR IDEENSAMMLUNG!!


Exponentialfunktion

In diesem Lernpfad lernst du

  • was exponentielles Wachstum bzw. exponentielle Abnahme bedeutet
  • worin sich lineares und exponentielles Wachstum unterscheiden
  • was eine Exponentialfunktion ist
  • Anwendungen zur Exponentialfunktion kennen
Die Übungen beziehen sich auf das Buch: Schnittpunkt Mathematik 10 Differenzierende Ausgabe - Klett-Verlag


Wachstum und Abnahme

Überlegt, wo es in eurer Umgebung Wachstum bzw. Abnahme gibt.

Gibt es ein Modell, das dieses Wachstum beschreibt?

Mögliche Antworten:

  • Bevölkerungswachstum
  • Bakterienwachstum
  • Haarwachstum
  • Druckzunahme je nach Meerestiefe
  • Temperaturanstieg
  • Sprunghöhe Flummi
  • Zerfall von Bierschaum
  • Kerzenhöhe je nach Dauer
  • Lichtintensität
  • Wertverlust bei Neuwagen

1 Lineares und exponentielles Wachstum

Sparmodell (vgl. Zinseszins) Erinnerung: Sparmodelle

1) Einstieg: Sparschwein

Sparschwein
Schreibe die Aufgabe und beide Möglichkeiten in dein Heft. Fülle die Tabelle aus.
Deine Oma schenkt dir zu deiner Geburt 1000€. Nun muss sie entscheiden, wie sie das Geld für dich angelegt. Die Bank bietet ihr einen Zinssatz von 5% an. Berechne, wie viel Geld du mit 18 Jahren bekämst. Übertrage die beiden Möglichkeiten in dein Heft und fülle die Tabelle aus.


1. Möglichkeit:
Sie lässt sich die Zinsen jedes Jahr auszahlen und spart sie in einem Sparschwein.

K = 1000€; p% = 5% = 0,05

Jahre Guthaben(€)
0 1000
1 1050
2 1100
3 1150
... ...
18 ...
2. Möglichkeit:
Sie lässt die Zinsen auf dem Sparbuch und fügt sie so jährlich dem Kapital zu.

K = 1000€; p% = 5% = 0,05

Jahre Guthaben(€)
0 1000
1 1050
2 1102,50
3 1157,625
... ...
18 ...

Beispielrechnung mit p% = 2% = 0,02


Kannst du eine Formel angeben, mit der du den Endbetrag berechnen kannst?

Kapital nach 18 Jahren:
K18 = ...
Kapital nach 18 Jahren:
K18 = ...


Unterschiede zwischen einfacher Verzinsung und Zinseszins

Notiere Stichpunkte in deinem Heft, wie sich die einfache Verzinsung in der ersten Möglichkeit vom Zinsenzins der zweiten Möglichkeit unterscheidet. Nutze dazu auch nachfolgende Applet.
Stelle einen Wert für den Zinssatz p% mit dem Schieberegler ein. Dann ziehe den Schieberegler für die Zeit t und beobachte den Verlauf des Kapitals.
blau: einfache Verzinsung
rot: Zinseszins

Was fällt dir auf?
GeoGebra

nach Pöchtrager



Hefteintrag: Zinseszins

Zinseszins bedeutet, dass ein Startkapital Zinsen erwirtschaftet und diese Zinsen werden dem Vermögen am Jahresende gutgeschrieben. So werden in Zukunft diese Zinsen ebenfalls verzinst.
Das Kapital nach n Jahren wird mit der Formel
Kn = K0 ∙ (1+p%)n

      = K0 ∙ qn       mit q = 1+p%


Beispiel:
geg: K0 = 1000€ (Startkapital, null Jahre); p% = 5% = 0,05; q = 1 + p% = 1 + 0,05 = 1,05; n = 18 Jahre
ges: Kn (Kapital nach n Jahren)

K18 = 1000 ∙ 1,0518
      = 2406,62 (€)

Nach 18 Jahren ist das Kapital auf 2406,62 € angewachsen.

Du nutzt folgende Taste beim Taschenrechner, um Exponenten größer als 3 einzugeben (hier z.B. n = 18):

Taschenrechner Exponent eingeben markiert.png

Das nachfolgende Video erklärt noch einmal den Zusammenhang zwischen p% und q.


Bei diesem Kapitalwachstum handelt es sich um ein sogenanntes exponentielles Wachstum.

2 Wachstumsrate und Wachstumsfaktor

Wachstumsrate und Wachstumsfaktor

Wird die Zunahme bzw. Abnahme in Prozent angegeben, heißt dieser Prozentsatz Wachstumsrate p%.
Beispiel: Das Kapital wächst pro Jahr um' 5%'. Die Wachstumsrate beträgt dann p% = 5%.
Das Kapital wächst also auf das 1,05-Fache.
Dies ist der Wachstumsfaktor q = 1,05. Er ergibt sich aus dem Grundwert von 100% und der Wachstumsrate p%:
q = 100% + p%
Das neue Kapital/den neuen Wert W1 berechnest du also mit der Gleichung:
K1 = K0 · q oder

W1 = W0 · q




Beispiele
1) Die Schülerzahl einer Schule von 550 ist innerhalb eines Jahres um 8% gestiegen.
Geg: W0 = 550; Wachstumsrate p% = 8%
Ges: W1 ; q
Der alte Wert ist von 100% auf 108% gestiegen, also auf das 1,08-Fache.
Wachstumsfaktor q             q = 1 + p%    
           Die neue Größe ergibt sich aus dem Produkt der alten Größe mit dem Wachstumsfaktor q:
W1 = W0 ∙ q              
W1= 550 ∙ 1,08
   = 594 (Schüler)
Die Anzahl der Schüler beträgt nun 594.

2) Die Anzahl der Schülerinnen und Schüler einer Schule stieg von 2017 bis 2018 von 540 auf 567. Bestimme die Wachstumsrate.
Geg: W0 = 540; W1 = 567
Ges: p% Wachstumsrate
Berechne die Wachstumsrate aus dem alten und neuen Wert:
Wachstumsrate:     p% =   =  = 0,05 = 5%
Wachstumsfaktor: q =   =  = 1,05        (Formel W1 = W0 ∙ q nach q umgestellt)
oder q = 1 + 5% = 1 + 0,05 = 1,05           ( Probe: 440 ∙ 1,05 = 462)

IDEE LearningApp mit Anwendungsaufgaben zur Bestimmung von p% und q (noch erstellen!)


3 Exponentielles Wachstum

Einstieg Weltbevölkerung
Im Jahr 2019 lebten 7,7 Mrd. Menschen auf der Erde. Wissenschaflter prognostizierten in diesem Jahr eine jährliche Zuwachsrate von 1,25%.
Also gilt q=100%+1,25% = 101,25% = 1,0125
Stelle diese Situation auf verschiedene Arten dar. (Erinnerung: Text (ist gegeben), Wertetabelle, Funktionsgleichung und Funktionsgraph)

...


Exponentielles Wachstum

Wir sprechen von exponentiellem Wachstum, wenn der Wert einer Größe in gleichen Zeitspannen immer um denselben Prozentsatz p% zunimmt bzw. abnimmt.
Die neue Größe nach n Zeitspannen berechnen wir mit
Wn = W0 · qn,

wobei q der Wachstumsfaktor ist. q = 1+p% (Zunahmen) bzw.q=1-p%(Abnahme)


Die Gleichung Wn = W0 · qn heißt Exponentialgleichung, da die Variable n im Exponenten steht.

ÜBUNGSAUFGABEN ERGÄNZEN

  • Formel umstellen
  • Verdopplungszeit (Bakterien)
GeoGebra

Applet von Hegius, R. Schürz

  • Halbwertszeit (Atome)
GeoGebra

Applet von Hegius, R. Schürz



4 Die Exponentialfunktion

Exponentialfunktion
Die Funktion mit der Gleichung f(x) = c∙ax heißt Exponentialfunktion.


Eigenschaften der Exponentialfunktion

Beschreibe die Eigenschaften der Exponentialfunktion f(x) = c∙ax .

Wähle zunächst c=1. Wie verläuft der Graph der Funktion? Löse den Lückentext und übertrage ihn in dein Heft.
GeoGebra

Applet von Ralf Wagner

Der Graph verläuft immer '‘‘oberhalb‘‘‘ der x-Achse.
Der Graph geht immer durch den Punkt '‘‘(0|1)‘‘‘.
Für a>1 '‘‘steigt‘‘‘ der Graph (Zunahme),

für 0<a<1 '‘‘fällt‘‘‘ der Graph (Abnahme).