Zufallsversuche
Für die nächsten Aufgaben benötigst du Stift, Papier und Taschenrechner. Du wirst hier und da Infoboxen finden, in denen verschiedene Begriffe oder Verfahren erklärt sind. Außerdem werden einige Beispiel angegeben. Sowohl die Infoboxen als auch die Beispiele sind mit dem Hinweis: "Information" verlinkt.
Aufgabe 1: Klassendienste
In einer Klasse sind 14 Jungen und 13 Mädchen. Es werden Beauftragte für verschiedene Klassendienste gelost.
a) Für den Blumendienst wird eine Person gelost. Wie groß ist die Wahrscheinlichkeit, dass es ein Junge ist?
Zeichne ein Baumdiagramm. Was sind die Ereignisse?
Baumdiagramm
Ein Baumdiagramm stellt dar, welche Ereignisse ein Zufallsexperiment haben kann. Entlang der Pfade schribt man die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, dass ein Junge den Dienst bekommt, liegt bei
.
b) Für den Tafeldienst wird auch ein Zettel gezogen, jedoch hat die Lehrperson nun auch einen Zettel mit ihrem Namen hinzugefügt. Wie groß ist die Wahrscheinlichkeit, dass sie gezogen wird?
Wie viele Zettel sind nun in der Urne?
Zeichne ein Baumdiagramm. Wie viele Ausgänge gibt es?
Die Wahrscheinlichkeit dafür, dass die Lehrperson selbst die Tafel putzen muss, liegt bei
.
Aufgabe 2: Schulfest
Bei eurem Schulfest gibt es eine Tombola. Bevor du blind ziehen darfst, wird dir einmal der Inhalt gezeigt, du zählst die Kugeln. Außerdem steht ein Schild neben der Urne (Abbildung 2). Du kannst auf dieBilder klicken, um sie in vergrößerter Form zu sehen.
Es sind 20 blaue Kugeln, 12 rote, 9 gelbe und 3 grüne.
Nun ziehst du blind eine Kugel.
a) Wie groß ist die Wahrscheinlichkeit, dass du einen Stift gewinnst (gelbe Kugel)? Gib die Lösung in Prozent an.
Zeichne ein Baumdiagramm. Wie viele Ausgänge gibt es?
Die Wahrscheinlichkeit einen Stift zu gewinnen liegt bei 20,45%.
b) Oben auf dem Plakat steht: "Hier ist Gewinnen wahrscheinlicher, als Verlieren!". Stimmt das? Berechne zunächst die einzelnen Wahrscheinlichkeiten. Gibt die Lösung wieder in Prozent an.
Zeichne ein Baumdiagramm. Wie viele Ausgänge gibt es?
Die Wahrscheinlichkeit, zu gewinnen liegt bei 54,55 %, die zu verlieren bei 45,45%.
Aufgabe 3: Münteraner Send
Arbeitsmethode