Benutzer:Buss-Haskert/Vierecke und Dreiecke/Umfang und Flächeninhalt/Dreieck

Aus ZUM Projektwiki
< Benutzer:Buss-Haskert‎ | Vierecke und Dreiecke‎ | Umfang und Flächeninhalt
Version vom 1. November 2020, 06:55 Uhr von Buss-Haskert (Diskussion | Beiträge) (Unterseite zu den Dreiecken erstellt)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

4.6) Dreieck: Umfang und Flächeninhalt

Wiederhole zunächst die Bezeichnungen am Dreieck. Übertrage die Zeichnung in dein Heft.

GeoGebra


Verschiebe im nachfolgenden Applet die Punkte und beobachte die Lage der Höhen. Was fällt dir auf?

GeoGebra

Die Höhen stehen senkrecht auf den Dreiecksseiten und verlaufen durch den gegenüberliegenden Eckpunkt.
Die Höhen schneiden sich in einem Punkt.

In einem stumpfwinkligen Dreieck verlaufen zwei Höhen außerhalb des Dreiecks.


Höhen im Dreieck zeichnen
Zeichne ein beliebiges Dreieck in dein Heft und beschrifte es. Zeichne nun die Höhen ha, hb und hc ein. Die Bildfolgen helfen dir dabei.

Zeichne die Höhe hc zur Seite c:

Dreieck Höhe einzeichnen 1.png Schiebe den Nullpunkt auf die Seite.
Dreieck Höhe einzeichnen 2.png Drehe das Geodreieck so, dass die Mittellinie auf der Seite liegt.
Dreieck Höhe einzeichnen 3.png Schiebe das Geodreieck so weit entlang der Seite, bis die Zeichenkante durch den gegenüberliegenden Eckpunkt verläuft.
Dreieck Höhe einzeichnen 4.png Zeichne und beschrifte die Höhe.

Zeichne ebenso die Höhe ha zur Seite a: Dreieck Höhe einzeichnen 5.png

Dreieck Höhe einzeichnen 5.png
Dreieck Höhe einzeichnen 6.png

... und die Höhe hb zur Seite b:

Dreieck Höhe einzeichnen 7.png
Dreieck Höhe einzeichnen 8.png

In einem stumpfwinkligen Dreieck verlaufen die Höhen teils außerhalb des Dreiecks. Die Dreiecksseite muss verlängert werden, um die Höhe einzeichnen zu können:

Dreieck Höhe einzeichnen 9.png
Dreieck Höhe einzeichnen 10.png
Dreieck Höhe einzeichnen 11neu.png

Übe zunächst das Einzeichnen der Höhen mit dem nachfolgenden Applet:

GeoGebra


Übung 11: Höhen zeichnen
Zeichne auf dem AB Nr. 2 alle Höhe ein. Eventuell musst du die Seiten verlängern.


Nun versuche, mithilfe des GaeoGebra-Applets die Formel für den Flächeninhalt eines Dreiecks herzuleiten. Notiere deine Ideen.
Bearbeite die nachfolgenden Applets Schritt für Schritt.

GeoGebra


GeoGebra


GeoGebra


Du kannst die Formel für den Flächeninhalt eines Dreiecks auch anders herleiten:

GeoGebra


GeoGebra


Flächeninhalt und Umfang eines Dreiecks

NOCH ERGÄNZEN
Der Flächeninhalt A eines Dreiecks wird folgendermaßen berechnet:
A = = = ; allgemein: A =

Der Umfang u eines Dreiecks wird berechnet mit

u = a + b + c.


Übung 12

Löse Buch

  • S. 88 Nr. 1
  • S. 88 Nr. 2


Umstellen der Formel
Um die Länge einer Seite oder Höhe zu berechnen, müssen die Formeln für den Flächeninhalt bzw. Umfang umgestellt werden.
1. Stelle die Flächeninhaltsformel um nach der Seitenlänge und nach der Länge der Höhe.
2. Stelle die Umfangsformel nach einer Seitenlänge um.
Umstellen nach einer Seite:

A = a∙ha   |:ha
= a
a =

Umstellen nach einer Höhe:

A = a∙ha   |:a
= ha

ha =


Übung 13

Löse Buch

  • S. 85 Nr. 6
Notiere die Formel und stelle sie nach der gesuchten Größe um. Setze dann ein und berechne.


Übung 14: Anwendungsaufgaben zu Dreiecken

Löse die Anwendungsaufgaben übersichtlich. Notiere zunächst die gegebenen Größen. Zeichne eine Skizze und beschrifte diese. Überlege, was gesucht ist. Unterscheide zwischen Flächeninhalt A(innen drin) und Umfang u (drum herum).

  • S. 89 Nr. 9
  • S. 89 Nr. 10
  • S. 89 Nr. 11
Notiere, welche Größen gegeben sind und welche gesucht werden. Fertige eine Skizze an und beschrifte sie mit den gegebenen Größen.

Die Holzverkleidung hat die Form eines Dreiecks mit der Grundseite g=1,5m und der Höhe h=3,7-2,2=1,5(m).
Lösung zur Kontrolle:AHolz=1,125m²
Das Fenster hat die Form eines Trapezes mit den Seiten c=1,1+1,5+1,5=3,7(m), a=1,5(m) und der Höhe h=2,2(m).
Du kannst die Glasfläche auch als zusammengesetzte Fläche betrachten:
Ein Rechteck in der Mitte und zwei Dreiecke außen.
Lösung zur Kontrolle:A=5,72m²
Um die Kosten zu berechnen, multipliziere jeweils die Fläche mit dem Preis pro m².

Lösung zur Kontrolle:Gesamtkosten ca.397,11€
Das Dach des Kirchturms besteht aus 4 Dreiecken. Welche Maße musst du für deine Skizze nutzen? Eine Angabe in der Zeichnung ist überflüssig.

Eine Dreiecksfläche hat die Grundseite g=5,2m und die Höhe h=7,35m. Die andere Zahlenangabe ist für die Lösung dieser Aufgabe überflüssig!

Um die Dachfläche zu bestimmen, berechne den Flächeninhalt einer Dreiecksfläche und mutlipliziere diese mit 4.
Um die Kosten zu berechnen, multipliziere die Dachfläche mit dem Preis pro m²
Die Schulhoffläche hat die Form eines rechtwinkligen Dreiecks, von dem ein Rechteck abgezogen werden muss. Der Winkel oben links ist ein rechter Winkel. Daher ist eine der Seiten a und b die Grundseite und die andere Seite ist die Höhe des Dreiecks.
{{{1}}}


Übung 15

Nachdenkaufgaben: Löse Buch

  • S. 89 Nr. 12
  • S. 90 Nr. 15
Nutze als Hilfe die nachfolgende Applets. Was geschieht mit dem Flächeninhalt und dem Umfang des Dreiecks. Notiere und erkläre.
GeoGebra


GeoGebra


GeoGebra