Benutzer:Buss-Haskert/Vierecke und Dreiecke/Umfang und Flächeninhalt/Parallelogramm

Aus ZUM Projektwiki
< Benutzer:Buss-Haskert‎ | Vierecke und Dreiecke‎ | Umfang und Flächeninhalt
Version vom 1. November 2020, 06:53 Uhr von Buss-Haskert (Diskussion | Beiträge) (Unterseite erzeugt, um den Seiteninhalt der vorherigen Seite zu verringern)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

4.4) Raute: Umfang und Flächeninhalt

Die Raute ist ein besonderes Parallelogramm, also gelten auch die Formeln des Parallelogramms für die Raute.


Es gibt eine weitere Möglichkeit, den Flächeninhalt einer Raute zu bestimmen. Bearbeite dazu das Applet. Findest du eine Formel für den Flächeninhalt?


Flächeninhalt und Umfang einer Raute
Raute mit Höhe.png



Die Raute ist ein besonderes Parallelogramm. Daher ist der Flächeninhalt A einer Raute:
A = a∙ha

Raute mit Diagonalen.png
Sind e und f die Diagonalen der Raute gilt zudem:

A =

Der Umfang u einer Raute wird berechnet mit

u = 4a .


Übung 7

Löse Buch

  • S. 96 Nr. 5c


4.5) Trapez: Umfang und Flächeninhalt


Flächeninhalt und Umfang des Trapezes
Trapez allgemein.png

Sind die a und c die parallelen Seiten des Trapezes und h die Höhe, wird der Flächeninhalt A eines Trapezes so berechnet:
A = oder A = ∙h

Der Umfang u eines Trapezes wird berechnet mit

u = a + b + c + d.
Übung 8

Löse Buch

  • S. 92 Nr. 1
  • S. 92 Nr. 2a,c


Umstellen der Formel

Um die Länge einer der Seiten a und c oder der Höhe zu berechnen, muss die Formeln für den Flächeninhalt umgestellt werden.
1. Stelle die Flächeninhaltsformel um nach den Seitenlängen a und c.


2. Stelle die Flächeninhaltsformel nach der Höhe um.
Umstellen nach der Seite a:

∙h   |∙2
2∙A = (a+c)∙h   |:h
= a+c   |-c
- c = a

Stelle die Formel entsprechend nach c um.

Umstellen nach der Höhe:

∙h   |∙2
2∙A = (a+c)∙h   |:(a+c)
= h


Übung 9

Löse Buch

  • S. 92 Nr. 5
  • S. 96 Nr. 4
Notiere die Formel und stelle sie nach der gesuchten Größe um. Setze dann ein und berechne.


Übung 10: Anwendungsaufgaben zu Trapezen

Löse die Anwendungsaufgaben übersichtlich. Notiere zunächst die gegebenen Größen. Zeichne eine Skizze und beschrifte diese. Überlege, was gesucht ist. Unterscheide zwischen Flächeninhalt A(innen drin) und Umfang u (drum herum).

  • S. 92 Nr. 6
  • S. 92 Nr. 7
  • S. 92 Nr. 8


4.6) Dreieck: Umfang und Flächeninhalt

Wiederhole zunächst die Bezeichnungen am Dreieck. Übertrage die Zeichnung in dein Heft.


Verschiebe im nachfolgenden Applet die Punkte und beobachte die Lage der Höhen. Was fällt dir auf?


Höhen im Dreieck zeichnen
Zeichne ein beliebiges Dreieck in dein Heft und beschrifte es. Zeichne nun die Höhen ha, hb und hc ein. Die Bildfolgen helfen dir dabei.

Zeichne die Höhe hc zur Seite c:

Dreieck Höhe einzeichnen 1.png Schiebe den Nullpunkt auf die Seite.
Dreieck Höhe einzeichnen 2.png Drehe das Geodreieck so, dass die Mittellinie auf der Seite liegt.
Dreieck Höhe einzeichnen 3.png Schiebe das Geodreieck so weit entlang der Seite, bis die Zeichenkante durch den gegenüberliegenden Eckpunkt verläuft.
Dreieck Höhe einzeichnen 4.png Zeichne und beschrifte die Höhe.

Zeichne ebenso die Höhe ha zur Seite a: Dreieck Höhe einzeichnen 5.png

Dreieck Höhe einzeichnen 5.png
Dreieck Höhe einzeichnen 6.png

... und die Höhe hb zur Seite b:

Dreieck Höhe einzeichnen 7.png
Dreieck Höhe einzeichnen 8.png

In einem stumpfwinkligen Dreieck verlaufen die Höhen teils außerhalb des Dreiecks. Die Dreiecksseite muss verlängert werden, um die Höhe einzeichnen zu können:

Dreieck Höhe einzeichnen 9.png
Dreieck Höhe einzeichnen 10.png
Dreieck Höhe einzeichnen 11neu.png

Übe zunächst das Einzeichnen der Höhen mit dem nachfolgenden Applet:

GeoGebra


Übung 11: Höhen zeichnen
Zeichne auf dem AB Nr. 2 alle Höhe ein. Eventuell musst du die Seiten verlängern.


Nun versuche, mithilfe des GaeoGebra-Applets die Formel für den Flächeninhalt eines Dreiecks herzuleiten. Notiere deine Ideen.
Bearbeite die nachfolgenden Applets Schritt für Schritt.




Du kannst die Formel für den Flächeninhalt eines Dreiecks auch anders herleiten:



Flächeninhalt und Umfang eines Dreiecks

NOCH ERGÄNZEN
Der Flächeninhalt A eines Dreiecks wird folgendermaßen berechnet:
A = = = ; allgemein: A =

Der Umfang u eines Dreiecks wird berechnet mit

u = a + b + c.


Übung 12

Löse Buch

  • S. 88 Nr. 1
  • S. 88 Nr. 2


Umstellen der Formel
Um die Länge einer Seite oder Höhe zu berechnen, müssen die Formeln für den Flächeninhalt bzw. Umfang umgestellt werden.
1. Stelle die Flächeninhaltsformel um nach der Seitenlänge und nach der Länge der Höhe.
2. Stelle die Umfangsformel nach einer Seitenlänge um.
Umstellen nach einer Seite:

A = a∙ha   |:ha
= a
a =

Umstellen nach einer Höhe:

A = a∙ha   |:a
= ha

ha =


Übung 13

Löse Buch

  • S. 85 Nr. 6
Notiere die Formel und stelle sie nach der gesuchten Größe um. Setze dann ein und berechne.


Übung 14: Anwendungsaufgaben zu Dreiecken

Löse die Anwendungsaufgaben übersichtlich. Notiere zunächst die gegebenen Größen. Zeichne eine Skizze und beschrifte diese. Überlege, was gesucht ist. Unterscheide zwischen Flächeninhalt A(innen drin) und Umfang u (drum herum).

  • S. 89 Nr. 9
  • S. 89 Nr. 10
  • S. 89 Nr. 11


Übung 15

Nachdenkaufgaben: Löse Buch

  • S. 89 Nr. 12
  • S. 90 Nr. 15
Nutze als Hilfe die nachfolgende Applets. Was geschieht mit dem Flächeninhalt und dem Umfang des Dreiecks. Notiere und erkläre.



4.7) Drachenviereck: Umfang und Flächeninhalt (Sprinteraufgabe)

Leite mithilfe des nachfolgenden GeoGebra-Applets die Formel für den Flächeninhalt eines Drachens (Deltoid) her:


Flächeninhalt und Umfang eines Drachen (Deltiod)
Drachen Bild.png



Sind e und f die Diagonalen des Drachen gilt:
A =

Der Umfang u eines Drachen wird berechnet mit

u = a + b + c + d = 2a + 2b (da d=a und c=b) .


Übung 17

Löse Buch

  • S. 96 Nr. 5b


Bunte Mischung: Üben - Üben - Üben




Übe mit Anton. Logge dich ein und bearbeite die bereitgestellten Übungen.