Benutzer:Florine WWU-6/Optimierungsprobleme: Testseite
Aus ZUM Projektwiki
< Benutzer:Florine WWU-6
Version vom 17. April 2020, 07:15 Uhr von Lena WWU-6 (Diskussion | Beiträge)
So löst du Optimierungsprobleme
Schritt 1: Erfasse das Problem
- Suche zunächst zur Größe, die optimiert, die passende Funktion. Überlege dir dazu genau:
- Welche Größen kommen vor?
- Welche Größe soll optimiert, also maximiert oder minimiert werden?
Schritt 2: Stelle einen funktionalen Zusammenhang her
- Du musst nun das Optimierungsproblem als Funktion ausdrücken. Stelle dazu erst einmal die Formel für die Größe auf, die du optimieren möchtest. Das ist dann deine Hauptbedingung.
- Betrachte jetzt deinen beiden Größen. Wie hängen sie zusammen? Stelle eine Formel mit beiden Größen auf. Diese ist deine Nebenbedingung.
- Setze jetzt deine Nebenbedingung in die Hauptbedingung ein. So erhältst du eine Zielfunktion mit nur einer Größe.
- Lege jetzt den Bereich für deine verbleibende Größe fest:
- Wie groß darf sie maximal sein?
- Wie klein darf sie maximal sein?
Schritt 3: Bestimme den Extremwert
Rechne nun deinen Extremwert aus. Dazu musst du nun wie folgt vorgehen:
- Bilde die Ableitung der Zielfunktion.
- Berechne den Extremwert über die notwendige und hinreichende Bedingung.
- Überprüfe, ob dein Extremwert in deinem gewählten Bereich liegt.
Beispiel
Inhalt
| Arbeitsmethode}}