Benutzer:David WWU-6/testseite
Wendepunkte
Ein Wendepunkt beschreibt einen Punkt auf einem Funktionsgraphen an dem sich das Krümmungsverhalten des Graphes ändert. Der Funktionsgraph ändert an dieser Stelle seine Krümmung von rechts nach links (Reschts-links-Wendestelle) oder von links nach rechts (Links-rechts-Wendestelle).
Tipp: Es kann helfen, wenn man sich vorstellt auf dem Graphen mit einem Fahrrad zu fahren, so ist der Wendepunkt genau an dem Punkt, wo sich die Richtung in die man lenkt ändert.
An einem Wendepunkt einer Funktion ist die Steigung in der näheren Umgebung maximal bzw. minimal. Daraus folgt, dass die Ableitung an dieser Stelle einen Extrempunkt aufweist. Daraus ergibt sich das notwendige Kriterium für einen Wendepunkt. Aus dem vorherigen Kapitel haben wir gelernt, dass wenn im Punkt die einen Extrempunkt aufweist, die Ableitung in diesem Punkt 0 ist. Das hinreichende Kriterium ergibt sich, wie im vorherigen Kapitel.
Zusammenfassung:
- notwendiges Kriterium:
- hinreichendes Kriterium: