Gymnasium Philippinum Marburg/Differentialrechnung5
zurück: Gymnasium Philippinum Marburg/DifferentialrechnungSeite3
Der Differentialquotient f'(x0 )
- beschreibt die Steigung der Tangenten an den Graphen der Funktion im Punkt A(x0|f(x0)) und entsteht, wenn man im Rahmen eines Grenzprozesses bei der Sekantensteigung zwischen den Punkten A(x0|f(x0)) und B(x1|f(x1)) den Punkt B(x1|f(x1)) immer mehr dem Punkt A(x0|f(x0)) annähert.
Im folgendem Applet können Sie den Übergang vom Differenzenquotienten zum Differentialquotienten nachvollziehen.

Übertragen Sie die Definition des Differentialquotienten zusammen mit einer geeigneten Skizze in Ihr Heft.
Testen
Sie sollten nach dem Test sagen können:
Ich kann die Bedeutung von Differenzenquotienten und des Differentialquotienten erklären. Ich kann erklären, wie man mit Hilfe von Differenzenquotienten den Differentialquotienten annähern kann.
Ordnen Sie die Ausdrücke unten den richtigen Oberbegriffen zu.
| Differenzenquotient | Sekantensteigung | Durchschnittsgeschwindigkeit | mittlere Änderungsrate | ||
| Differentialquotient | Tangentensteigung | Momentangeschwindigkeit | momentane Änderungsrate |
Wenn Sie mehr als zwei falsche Zuordnungen gemacht haben, sollten Sie vor der Weiterarbeit noch einmal die Definitionen und Zusammenhänge der Begriffe wiederholen.
