Wie lautet der Name dieses Gesetzes? Notiere dies als Überschrift über die obige Zeichnung in dein Heft.
Das Gesetz heißt Verteilungsgesezt (Distributivgesetz). Wir haben dies umgangssprachlich auch "Jedem die Hand geben" genannt und die Hände als Tipp gezeichnet.
Dieses Gesetz wird im folgenden GeoGebra-Applet noch einmal veranschaulicht. Du kannst die Zahlen durch Variablen ersetzen, indem du die Häkchen "Variable anzeigen" auswählst.
Originallink: https://www.geogebra.org/m/XcFmnc9X
Applet von Birgit Lachner
Das Verteilungsgesetz lässt sich auf das Rechnen mit Variablen und Termen übertragen:
Verteilungsgesetz (Distributivgesetz)
Zeichne die Figur in dein Heft und fülle die Lücken im Merksatz. Schreibe ihn in dein Heft ab.
Auch hier ist das große Rechteck aus den kleinen Flächen zusammengesetzt. Der Flächeninhalt kann auf zwei Arten angegeben werden:
als Produkt der Seitenlängen a ⋅ ⟨b+c⟩ und als Summe der einzelnen Flächen a⋅b + a⋅c
Es gilt also: a⋅(b+c) = a⋅b + a⋅c.
Übung 1: Verteilungsgesetz: Rechnen mit Rechtecken
Löse zur Übung die nachfolgenden LearningApps.
1.1 Ausmultiplizieren
Durch Ausmultiplizieren wird ein Produkt in eine Summe umgewandelt, die Klammern werden also aufgelöst.
Hefteintrag: Ausmultiplizieren
Beim Ausmultiplizieren wird jeder Summand in der Klammer mit dem Faktor vor/nach der Klammer multipliziert.
Um Produktterme so einfach wie möglich zu schreiben, dürfen überflüssige Malpunkte weggelassen werden. Dies sind Malpunkte zwischen einer Zahl und einer Variablen und zwischen einer Zahl oder Variablen und einer Klammer.Markiere die überflüssigen Malpunkte in den Termen.
Übung 6 Ausmultiplizieren
Löse die Klammern auf und vereinfache den Term so weit wie möglich.
1.2 Ausklammern
Beim Ausklammern wird eine Summe in ein Produkt umgewandelt, es werden also Klammern hinzugefügt.
Dies ist nur dann möglich, wenn die Summanden gemeinsame Faktoren haben.
Im nachfolgenden Applet kannst du die Werte für a und b mithilfe der Schieberegler verändern. Beschreibe, wie jeweils die Werte der beiden Terme berechnet werden.
Originallink https://www.geogebra.org/m/twss59dq
Haben die Terme 3a + 4b und 7ab immer denselben Wert? Begründe.
Übung 2
Berechne den Wert des Terms 5∙x für
a) x = 8
b) x = -3
c) x =
d) x = -1,5
Erinnerung: Du multiplizierst einen Bruch mit einer Zahl, indem du den Zähler mit der Zahl multiplizierst und den Nenner beibehältst:
Cookies helfen uns bei der Bereitstellung von ZUM Projektwiki. Durch die Nutzung von ZUM Projektwiki erklärst du dich damit einverstanden, dass wir Cookies speichern.