Benutzer:Gabriel.cicek/Zufällige Ereignisse und ihre Wahrscheinlichkeit/Wahrscheinlichkeit bei mehrstufigen Laplace-Versuchen

Aus ZUM Projektwiki


Merke


Sind bei einem mehrstufigen Zufallsversuch die Wahrscheinlichkeiten auf jeder Stufe gleich groß, so ist der Versuch ein mehrstufiger Laplace-Versuch.

Beispiel:
Es wird eine Münze zweimal geworfen. Mögliche Ergebnisse pro Wurf sind Kopf (K) und Zahl (Z).

Baumdiagramm und Wahrscheinlichkeiten der Stufen:

Baumdiagramm Münzwurf.jpg


Wie bei einstufigen Laplace- Zufallsversuchen, ist auch hier die Wahrscheinlichkeit für ein Ereignis:

Am Beispiel des zweifachen Münzwurfes wäre das für das Ereignis "Nach jedem Wurf zeigt die Münze Zahl":

P(Z,Z) = , weil nur ein Ergebnis auf das Ereignis zutrifft und es insgesamt vier Ergebnisse gibt.





Übung

Seite 186,

Nr.3-4

Nr.5 a)-c)


Tipps für die Aufgaben im Buch:



Aufgabe 4:

(1) Differenz ist das Ergebnis eine Subtraktion. Die Differenz von 8 und 3 ist 5.


(2) Die Summe ist das Ergebnis einer Addition. Die Summe von 1 und 3 ist 4.


(4) Das Produkt ist das Ergebnis eine Multiplikation. Das Produkt von 2 und 3 ist 6.


(5) Die Vielfachen von 3 sind 3,6,9,12,15,..., Die Vielfachen von 3 berechnest du, indem du eine ganze Zahl mit 3 multiplizierst.


Lösungen für die Aufgaben im Buch:

a) Für das Baumdiagramm gibt es keine Lösung. b) (1) 1/12

(2) 1/4
1);(5

}}

a) Für das Baumdiagramm gibt es keine Lösung S = {(RR); (RG); (RS); (GR); (GG); (GS); (SR); (SG); (SS)}

b) 1/9

c) P(E1) = 1/3 P(E2) = 4/9 P(E3) = 2/9

P(E4) = 5/9