Benutzer:Meike WWU-12/Entwurf des Lernpfadkapitels: Unfallforensiker*in
In diesem Lernpfadkapitel widmen wir uns dem Beruf des*der Unfallforensiker*in.
Um dieses Kapitel zu bearbeiten benötigst du das zugehörige Arbeitsblatt, Zettel und Stift, ein Geodreieck und einen Taschenrechner.
Bei den Aufgaben unterscheiden wir folgende Typen:
- In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
- Aufgaben in pinker Farbe sind Aufgaben mittlerer Schwierigkeit.
- Und Aufgaben mit lilanem Streifen sind Knobelaufgaben.
- Aufgaben, die mit einem ⭐ gekennzeichnet sind, sind nur für den E-Kurs gedacht.
Am Ende dieses Kapitels kannst du:
- einen Autounfall rekonstruieren.
- ein Unfallgutachten erstellen.
Inhaltsverzeichnis
Unfallforensiker:in
Aufgabe 1: Unfallrekonstruktion
Ordne den gezeichneten Winkeln die passende Winkelgröße zu. Überprüfe dein Ergebnis.
Achtung: Einem Winkel kann keine passende Größe zugeordnet werden.
Du triffst als Unfallforensiker*in am Unfallort auf folgende Situation und stellst einige Messungen an (reales Bild der Unfallstelle als Abbildung 1 mit Bremsweg, Mauer, neuer Position des Autos und Abmessungen, wie das Auto sich bewegt hat)
Für die Unfallrekonstruktion ist es wichtig, die am Unfallort getätigten Feststellungen in eine mathematische Skizze zu überführen. Fertige in einem Koordinatensystem auf dem Arbeitsblatt eine Skizze des Unfallortes an.
Für die Bearbeitung der Aufgaben 1b und 1c hast du zwei Möglichkeiten, von denen du eine auswählen darfst:
- Digital: Du kannst das Koordinatensystem auf dem Arbeitsblatt digital (auf dem iPad) erstellen.
- Analog: Du hast auch die Möglichkeit, das Koordinatensystem analog zu erstellen. Bei Bedarf kannst du dir bei einer der Aufsichtspersonen ein weißes Blatt, einen Bleistift und ein Geodreieck ausleihen.Betrachte Abbildung 1 und überlege anhand der angegebenen Abmessungen, wie du (1) den Beginn des Bremsweges, (2) den Aufprall des Autos auf die Mauer sowie (3) den jetzigen Standort des Autos als drei Punkte im Koordinatensystem darstellen kannst.
Überlege nun, wie du außerdem die Mauer als Gerade im Koordinatensystem darstellen kannst.
Du hast nun als Unfallforensiker*in die Aufgabe, den Einlaufwinkel und den Auslaufwinkel in der vorliegenden Unfallsituation zu messen. Miss dazu im Koordinatensystem, das in Aufgabenteil b angefertigt wurde, den Einlauf- und den Auslaufwinkel mithilfe eines Geodreiecks. Trage deine Ergebnisse in die nachfolgenden Felder zum Überprüfen ein.
Aufgabe 2: Unfallgutachten
Im Rahmen der Unfallanalyse, die ein:e Unfallforensiker:in anstellt, kann auch festgestellt werden, ob sich die fahrende Person an die vorgeschriebene Geschwindigkeit gehalten hat. Um dies herauszufinden, wird die Länge der entstandenen Bremsspur gemessen. So kann mit wenigen Schritten ermittelt werden, wie hoch die Geschwindigkeit vor dem Unfall war.
Bei dem Unfall ist eine Bremsspur mit einer Länge von 49m entstanden. Berechne, wie hoch die Geschwindigkeit vor dem Unfall war. Hat sich die fahrende Person an die vorgeschriebene Geschwindigkeit von 50km/h gehalten?
Die kinetische Energie ist ein wichtiger Bestandteil des Gutachtens. Die kinetische Energie, das heißt die Bewegungsenergie, wird bei einem Unfall in Verformungsarbeit umgewandelt. Somit gilt: Je höher die kinetische Energie, desto größer sind die Schäden am Auto.
So kann beispielsweise mithilfe der kinetischen Energie und durch Abgleich des realen Schadens festgestellt werden, ob das Auto zuvor schon schwerer beschädigt war.
Das Auto im Unfall aus Aufgabe 2a wiegt ca. 1,4 t. Bestimme die kinetische Energie beim Aufprall, wenn davon ausgegangen wird, dass nicht gebremst wurde.
Ordne den verschiedenen geometrischen Formen die passende Skizze sowie die geeignete Formel zur Berechnung des Flächeninhalts A zu. Überprüfe deine Lösung.
Du hast beim Unfall eine Skizze vom Auto gemacht und einige Abmessungen eingetragen:
Berechne nun, wie groß die beschädigte Fläche, im Bild die rot markierte Fläche, in etwa ist (in m2). Runde dabei bei jedem Rechenschritt auf zwei Nachkommastellen und schreibe den Rechenweg auf dem Arbeitsblatt auf.
Um die Fläche ungefährt zu berechnen, kann man die Form des Autos in kleinere Flächen aufteilen und durch Kreise, Dreiecke und Rechtecke annähern. Zum Beispiel so:
Nach Absprache mit einer Werkstatt erfährst du, dass die Reparaturkosten 2.500 € betragen. Das Auto hat ursprünglich 21.000 € gekostet und hatte durch den alltäglichen Verschleiß und das Alter vor dem Unfall bereits einen Werteverlust von 30%.
Bestimme den Prozentsatz der Reparaturkosten an dem Wert des Autos vor dem Unfall. Berechne dazu zunächst den Restwert des Autos vor dem UNfall (Schritt 1) und anschließend den Prozentsatz der Reperaturkosten daran und trage alle Werte in die Tabelle ein.
Zur Berechnung des Wertes vor dem Unfall benötigst du Prozentrechnung. Dabei gilt allgemein W=p*G, wobei W der Prozentwert, p der Prozentsatz und G der Grundwert ist. Zur Berechnung des Autowertes vor dem Unfall kannst du also die Werte (Neupreis und 100%-30%=70%) einsetzen, der Prozentsatz muss dabei geändert werden, da nicht der Wertverlust, sondern der Restwert berechnet werden soll.
Um dann den Anteil der Reparaturkosten an diesem Wert, also den Prozentsatz, auszurechnen, solltest du zusätzlich noch in einer Äquivalenzumformung die Formel umstellen.Wir nutzen die Formel W=p*G.
Zu dem Restwert vor dem Unfall: Es gilt p=70%=0,7, da der Restwert und nicht der Verlust berechnet werden soll, und G=21000 [€]. Somit W=14700 [€]
Zum Prozentsatz der Reparaturkosten am Restwert: Da der Prozentsatz der Raperaturkosten am Restwert berechnet werden soll, ist der neue Grundwert allerdings G=14700 und der Prozentwert ist W=2500. Somit gilt p≈0,17=17%.
Der Prozentsart der Reparaturkosten am Restwert des Autos beträgt also ca. 17%.