Herta-Lebenstein-Realschule/Die Scheitelpunktform quadratischer Funktionen sportlich erarbeiten

Aus ZUM Projektwiki
Lernpfad Scheitelpunktform quadratische Funktionen sportlich erarbeiten
[[Bild:
Bild von Hebi B. auf Pixabay
|250px]]
Die Parameter a, d und e der Scheitelpunktform quadratische Funktionen f(x) = a (x + d)² + e werden mithilfe dreier "Sportler" erarbeiten

  1. Anton: f(x) = a

Anton ist sehr sportlich, er spielt Basketball:


Bedeutung des Parameters a
Welche Rolle spielt anton für den Graphen der Parabel?


Öffne die Seite und verändere a.

GeoGebra


Welche Auswirkungen hat der anton auf das Schaubild der Normalparabel?



Bedeutung des Parameters a
Schreibe den Lückentext in dein Heft ab.


Wende dein Wissen an.
Ordne den Funktionsgraphen die passenden Funktionsgleichungen zu.
F(x) = x².png F(x) = -x².png F(x) = 0.5x².png F(x) = -0.5x².png F(x) = 2x².png F(x) = -2x².png
f(x) = x2   f(x) = - x2 f(x) = 0,5x2 f(x) = -0,5x2 f(x) = 2x2 f(x) = -2x2


Üb3 Parabel 1.jpg Üb3 Parabel 3.jpg Üb3 Gerade 1.jpg Üb3 Parabel 4.jpg Üb3 Gerade 2.jpg Üb3 Parabel 2.jpg
y = x2 + 3   y = - x2 + 3 y = - x + 3 y = -x2 - 3 y = x - 3 y = x2 - 3


2. Detlef: f(x) = (x + d

Detlef ist ebenfalls sportlich, allerdings auch ein wenig dusselig. Er läuft beim Sprint immer in die entgegengesetzte Richtung.



Bedeutung des Parameters d
Welche Rolle spielt detlef ?

Öffne die Seite und verändere d.

GeoGebra

Welche Auswirkungen hat detlf auf das Schaubild der Normalparabel?



Bedeutung des Parameters d
Schreibe den ausgefüllten Lückentext zur Bedeutung des Parameters d für in dein Heft ab.


Wende dein Wissen an
Ordne den Funktionsgraphen die passenden Funktionsgleichungen zu.

3. Emil: f(x) = x² + e

emil ist ebenfalls sehr sportlich:

Er kann sehr hoch springen, ebenso gut kann er tauchen.

Bedeutung des Parameters e
Welche Rolle spielt emil ?
Öffne die Seite und verändere e.
GeoGebra



Welche Auswirkungen hat emil auf das Schaubild der Normalparabel?


Bedeutung des Parameters e
Schreibe den ausgefüllten Lückentext zur Bedeutung des Parameters e für in dein Heft ab.


Wende dein Wissen an
Ordne den Funktionsgraphen die passenden Funktionsgleichungen zu.