Geometrie im Dreieck/Triangle-Architects: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 33: Zeile 33:
Kannst du ihnen helfen? Welche Größen müssen Sie messen, um die Bühne zu kostruieren? Beschäftige dich dabei zunächst nur mit der dreieckigen Grundfläche (Siehe Abbildung 3). Notiere dir die Größen, die sie deiner Meinung nach messen müssen, auf einem Schmierpapier. Gibt es verschiedene Kombinationen, die eine Konstruktion möglich machen? Überprüfe dich später selber.
Kannst du ihnen helfen? Welche Größen müssen Sie messen, um die Bühne zu kostruieren? Beschäftige dich dabei zunächst nur mit der dreieckigen Grundfläche (Siehe Abbildung 3). Notiere dir die Größen, die sie deiner Meinung nach messen müssen, auf einem Schmierpapier. Gibt es verschiedene Kombinationen, die eine Konstruktion möglich machen? Überprüfe dich später selber.
{{Lösung versteckt|1=Messbare Gößen sind die Länge der Hausseite a, der Hausseite b und der Hausseite c und die Größe der Winkel α, β und γ |2= Hilfe|3= Hilfe verbergen}}
{{Lösung versteckt|1=Messbare Gößen sind die Länge der Hausseite a, der Hausseite b und der Hausseite c und die Größe der Winkel α, β und γ |2= Hilfe|3= Hilfe verbergen}}





Version vom 15. November 2024, 17:51 Uhr

Info

Info

In diesem Lernpfadkapitel lernst du 3 Kongruenzsätze kennen, wie du Konstruktionsbeschreibungen erstellst und umsetzt.

Für die Bearbeitung dieses Kapitels benötigst du das Grundlagen-bearbeiten.png Arbeitsblatt "Triangle Architects", einen Zirkel, ein Geodreieck und einen Bleistift.

Bei den Aufgaben unterscheiden wir folgende Typen:

  • Aufgaben, die gelb gefärbt sind, solltest du zum Einstieg auf jeden Fall bearbeiten.
  • In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
  • Aufgaben in pinker Farbe sind Aufgaben mittlerer Schwierigkeit.
  • Aufgaben mit lilaner Farbe sind schwierige Aufgaben.
  • Immer wenn du Hilfe benötigst, kannst du die "Hilfe"-Kästchen öffnen. Tue dies aber wirklich nur, wenn es nötig ist.
  • Außerdem findest du unter den Texten auch "Worthilfen", in denen schwierige Wörter erklärt sind. Die erklärten Wörter sind im Text fett markiert.
Viel Erfolg!



1. Einstieg

Achim und Alberta sind verwirrt
Schloss Hülshoff mit der Bühnenkonstruktion von Achim und Alberta

Zwischen Münster und Havixbeck steht die Burg Hülshoff. Vor etwa 200 Jahren wurde dort Annette Droste-Hülshoff geboren. Sie schrieb unter anderem das Gedicht "der Knabe im Moor". Zur Erinnerung an sie soll in den Burghof eine Bühne gebaut werden. Damit wurde das Architektenduo Achim-Alberta beauftragt. Das Duo hat bereits eine Idee und eine Skizze angefertigt (Siehe Bilder). Heute wollen sie zum Schloss fahren und messen, wie groß die Bühne wird. Sie überlegen, welche Längen und Winkel sie messen müssen, um die Bühne genau zu konstruieren.

Abbildung 3: Bühnenkonstruktion von Achim und Alberta

Kannst du ihnen helfen? Welche Größen müssen Sie messen, um die Bühne zu kostruieren? Beschäftige dich dabei zunächst nur mit der dreieckigen Grundfläche (Siehe Abbildung 3). Notiere dir die Größen, die sie deiner Meinung nach messen müssen, auf einem Schmierpapier. Gibt es verschiedene Kombinationen, die eine Konstruktion möglich machen? Überprüfe dich später selber.


2. Ein Dreieck konstruieren mit Seite Winkel Seite (SWS)

In diesem Kapitel lernst du, wie du ein Dreieck konstruieren kannst, wenn du die Länge von zwei Seiten und den dazwischen liegenden Winkel kennst. In der Box steht eine Anleitung, die dir das Konstruieren von Dreiecken erleichtert. Nutze die Anleitung für die folgenden Aufgaben.


Anleitung

A: Schreibe auf, welche Angaben über das Dreieck gegeben sind.

B: Zeichne eine Planfigur. Markiere die gegebenen Größen rot.

C: Konstruiere das Dreieck.

  • 1. Zeichnne eine der gegebenen Seiten.
  • 2. Zeichne den gegebenen Winkel. Achte darauf, ihn an die richtige Seite zu zeichnen. Durch den Winkel entsteht ein Schenkel.
  • 3. Messe an diesem Schenkel die Länge der zweiten gegebenen Seite ab und zeichne diese Seite ein. Hierfür kannst du gut einen Zirkel verwenden.
  • 4. Verbinde die beiden noch unverbundenen Punkte. Fertig ist das Dreieck.

Erinnerung: Alle Seiten, Winkel und Längen müssen beschriftet werden.

D: Schreibe eine Konstruktionsbeschreibung: Notiere die Schritte 1-4


Aufgabe 2.1: Konstruktionsbeschreibung anfertigen


Aufgabe 2.2: Konstruktionsbeschreibung sortieren


Aufgabe 2.3: Fertigstellen einer Konstruktion mit SWS


Aufgabe 2.4: Durchführung einer Konstruktion mit SWS


Aufgabe 2.5: Durchführung einer Konstruktion mit SWS

3. Ein Dreieck konstruieren mit Winkel Seite Winkel (WSW)

In diesem Kapitel lernst du, wie du ein Dreieck konstruieren kannst, wenn du zwei Winkel gegeben hast sowie die Seite, die zwischen diesen beiden Winkeln liegt.


Anleitung

A: Schreibe auf, welche Angaben über das Dreieck gegeben sind.

B: Zeichne eine Planfigur. Markiere die gegebenen Größen rot.

C: Konstruiere das Dreieck.

  • 1. Zeichne als erstes die gegebene Seite und beschrifte diese.
  • 2. Zeichne an ein Ende dieser Seite den ersten Winkel ein.
  • 3. Zeichne am anderen Ende der Seite den zweiten Winkel ein.

Verlängere nun die beiden Schenkel an den beiden Winkeln. Sie schneiden sich in einem Punkt, fertig ist das Dreieck! Beschrifte das Dreieck vollständig.

D: Schreibe eine Konstruktionsbeschreibung: Notiere die Schritte 1-3


Aufgabe 3.1: Konstruktionsbeschreibung anfertigen/ Bilder ordnen


Aufgabe 3.2: Konstruktionsbeschreibung anfertigen/ Lückentext


Aufgabe 3.3: Durchführung einer Konstruktion mit WSW


Aufgabe 3.4: Dachkonstruktion mit WSW

4. Training macht den Meister

Aufgabe 4.1: Trainiere dein Wissen!


Aufgabe 4.2: Erinnere dich an den Einstieg zurück!

5. Triangle-Experts: Kann man mit drei Seiten immer ein Dreieck konstruieren?

In diesem Kapitel lernst du, wann man ein Dreieck konstruieren kann, wenn alle drei Seiten bekannt sind.

Aufgabe 5.1: Wann ist ein Dreieck konstruierbar?


Aufgabe 5.2: Entscheide, was richtig ist


Aufgabe 5.3: Stelle einen Merksatz auf


Super, du bist fertig! Gehe zurück zur Startseite Geometrie im Dreieck und bearbeite ein weiteres Kapitel!