Geometrie im Dreieck/Triangle-Architects: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 138: | Zeile 138: | ||
In diesem Kapitel lernst du, wann man ein Dreieck konstruieren kann, wenn alle drei Seiten bekannt sind. | In diesem Kapitel lernst du, wann man ein Dreieck konstruieren kann, wenn alle drei Seiten bekannt sind. | ||
{{Box|Aufgabe 5.1: Wann ist ein Dreieck konstruierbar? | |||
{{Box|Aufgabe 5.1: Wann ist ein Dreieck konstruierbar?| | | 2 = Unten siehst du ein Dreieck. Du kannst das Dreieck verändern, indem du die Längen der Seiten a,b und c mithilfe des jeweiligen Schiebereglers veränderst. '''a)''' Überprüfe zuerst ob die folgende Dreiecke mit den gegebenen Seiten konstruierbar sind. | ||
Unten siehst du ein Dreieck. Du kannst das Dreieck verändern, indem du die Längen der Seiten a,b und c mithilfe des jeweiligen Schiebereglers veränderst. '''a)''' Überprüfe zuerst ob die folgende Dreiecke mit den gegebenen Seiten konstruierbar sind. | |||
# a=3, b=3, c=3 | # a=3, b=3, c=3 | ||
# a=5, b=4, c=3 | # a=5, b=4, c=3 | ||
Zeile 146: | Zeile 145: | ||
# a=4, b=9, c=4 | # a=4, b=9, c=4 | ||
'''b)''' Finde nun durch Bewegen der Schieberegler heraus, unter welchen Bedingungen ein Dreieck mit drei gegebenen Seiten a,b und c konstruierbar ist. | '''b)''' Finde nun durch Bewegen der Schieberegler heraus, unter welchen Bedingungen ein Dreieck mit drei gegebenen Seiten a,b und c konstruierbar ist. | ||
| Aufgabe anzeigen | | |||
<ggb_applet id="PdRUrDxe" width="1000" height="601" border="888888" /> | |||
{{Lösung versteckt|Addiere jeweils die Länge von 2 Seiten. Ist diese Summe kleiner oder größer als die dritte Seite? |Tipp für Aufgabe 1b anzeigen|Tipp verbergen}} | |||
| Farbe = #5E43A5 | |||
}} | |||
{{Box|Aufgabe 5.1: Wann ist ein Dreieck konstruierbar?|{{Lösung versteckt | Unten siehst du ein Dreieck. Du kannst das Dreieck verändern, indem du die Längen der Seiten a,b und c mithilfe des jeweiligen Schiebereglers veränderst. '''a)''' Überprüfe zuerst ob die folgende Dreiecke mit den gegebenen Seiten konstruierbar sind. | {{Box|Aufgabe 5.1: Wann ist ein Dreieck konstruierbar?|{{Lösung versteckt | Unten siehst du ein Dreieck. Du kannst das Dreieck verändern, indem du die Längen der Seiten a,b und c mithilfe des jeweiligen Schiebereglers veränderst. '''a)''' Überprüfe zuerst ob die folgende Dreiecke mit den gegebenen Seiten konstruierbar sind. | ||
Zeile 157: | Zeile 162: | ||
{{Lösung versteckt|Addiere jeweils die Länge von 2 Seiten. Ist diese Summe kleiner oder größer als die dritte Seite? |Tipp für Aufgabe 1b anzeigen|Tipp verbergen}} | {{Lösung versteckt|Addiere jeweils die Länge von 2 Seiten. Ist diese Summe kleiner oder größer als die dritte Seite? |Tipp für Aufgabe 1b anzeigen|Tipp verbergen}} | ||
{{Box|Aufgabe 5.2: Entscheide, was richtig ist|{{Lösung versteckt | | |||
Kreuze an, welche Bedingungen in einem Dreieck vorliegen müssen, damit es konstruierbar ist. Wähle alle richtigen Antworten aus! | |||
{{LearningApp|app=pkzd58un324|width=100%|height=400px}} | |||
| Aufgabe anzeigen | Aufgabe verbergen}}|Arbeitsmethode| Farbe = #5E43A5 }} | |||
{{Box|Aufgabe 5.2: Entscheide, was richtig ist|Kreuze an, welche Bedingungen in einem Dreieck vorliegen müssen, damit es konstruierbar ist. Wähle alle richtigen Antworten aus! | {{Box|Aufgabe 5.2: Entscheide, was richtig ist|Kreuze an, welche Bedingungen in einem Dreieck vorliegen müssen, damit es konstruierbar ist. Wähle alle richtigen Antworten aus! |
Version vom 15. November 2024, 08:20 Uhr
Info
1. Einstieg
Zwischen Münster und Havixbeck steht die Burg Hülshoff. Vor etwa 200 Jahren wurde dort Annette Droste-Hülshoff geboren. Sie schrieb unter anderem das Gedicht "der Knabe im Moor". Zur Erinnerung an sie soll in den Burghof eine Bühne gebaut werden. Damit wurde das Architektenduo Achim-Alberta beauftragt. Das Duo hat bereits eine Idee und eine Skizze angefertigt (Siehe Bilder). Heute wollen sie zum Schloss fahren und messen wie groß die Bühne wird. Sie überlegen, welche Längen und Winkel sie messen müssen um die Bühne genau zu konstruieren.
Kannst du ihnen helfen? Welche Größen müssen Sie messen um die Bühne zu kostruieren? Beschäftige dich dabei zunächst nur mit der Dreieckigen Grundfläche (Siehe Abbildung 3)
2. Ein Dreieck konstruieren mit Seite Winkel Seite (SWS)
In diesem Kapitel lernst du, wie du ein Dreieck konstruieren kannst, wenn du die Länge von zwei Seiten und den dazwischen liegenden Winkel kennst. In der Box steht eine Anleitung, die dir das Konstruieren von Dreiecken erleichtert. Nutze die Anleitung für die folgenden Aufgaben.
Konstruieren bedeutet, dass du eine geometrische Figur schritt für schritt erstellst. Dabei musst du sehr genau arbeiten.
Planfigur: Eine Planfigur ist eine kleine Zeichnung, in der noch nicht alle Längen, Winkel und Größen richtig eingetragen sind. Du makierst dir die gegebene Größen, Winkel, Seiten bunt und hast hierdurch einen besseren Überblick.
3. Ein Dreieck konstruieren mit Winkel Seite Winkel (WSW)
In diesem Kapitel lernst du, wie du ein Dreieck konstruieren kannst, wenn du zwei Winkel gegeben hast sowie die Seite, die zwischen diesen beiden Winkeln liegt.
4. Training macht den Meister
5. Triangle-Experts: Kann man mit drei Seiten immer ein Dreieck konstruieren?
In diesem Kapitel lernst du, wann man ein Dreieck konstruieren kann, wenn alle drei Seiten bekannt sind.
Super, du bist fertig! Gehe zurück zur Startseite Geometrie im Dreieck und bearbeite ein weiteres Kapitel!