Also ist der Tee nach ca. 9 Minuten auf unter 65°C abgekühlt|2=Lösen mit Logarithmieren|3=Verbergen}}
Also ist der Tee nach ca. 9 Minuten auf unter 65°C abgekühlt.|2=Lösen mit Logarithmieren|3=Verbergen}}
{{Box|Übung 4: Aufgabenfuchs|Bearbeite auf der Seite [https://mathe.aufgabenfuchs.de/potenz/exp_wachstum.shtml '''Aufgabenfuchs'''] die folgenden Aufgaben.
{{Box|Übung 4: Aufgabenfuchs|Bearbeite auf der Seite [https://mathe.aufgabenfuchs.de/potenz/exp_wachstum.shtml '''Aufgabenfuchs'''] die folgenden Aufgaben.
Im Jahr 2019 lebten 7,7 Mrd. Menschen auf der Erde. Wissenschaflter prognostizierten in diesem Jahr eine jährliche Zuwachsrate von 1,25%. Also gilt q=100%+1,25% = 101,25% = 1,0125
Wie viele Menschen leben demnach im Jahr 2030 auf der Erde?
Stelle diese Situation auf verschiedene Arten dar. (Erinnerung: Text (ist gegeben), Wertetabelle, Funktionsgleichung und Funktionsgraph)
Wir sprechen von exponentiellem Wachstum, wenn der Wert einer Größe in gleichen Zeitspannen immer um denselben Prozentsatz p% zunimmt bzw. abnimmt.
Die neue Größe nach n Zeitspannen berechnen wir mit Wn = W0 · qn,
wobei q der Wachstumsfaktor ist.
Zunahme: q = 1 + p%, also q > 1
Abnahme: q = 1 - p%, also q < 1
Die Gleichung Wn = W0 · qn heißt Exponentialgleichung, da die Variable n im Exponenten steht.
Du kannst die Formel auch nach n umstellen. Die Lösung erfolgt durch Logarithmieren. Eine Erklärung hierzu, findest du unten auf der Seite.
Anwendungsaufgabe 2: Klimawandel (W0 gesucht)
Im Jahr 2021 ist die Fläche der Arktis mit 4,7 Mio km² deutlich kleiner als noch vor rund 30 Jahren. Die Abnahme beträgt mit leichten Schwankungen jährlich ca. 1,7%.
Wie groß war die Fläche vor 30 Jahren?
Eine Tasse Tee wird mit kochendem Wasser (100°C) aufgegossen. Die Temperatur sinkt jede Minute um 5%. Es wird empfohlen, Getränke nicht heißer als 65°C zu trinken.
Nach wie vielen Minuten ist der Tee kalt genug?
geg: W0 = 200 g; p% = 30% = 0,3, also q = 1+0,3 = 1,3; Wn = 1200 g
ges: n
Rechne wie in Anwendungsaufgabe 4. Löse durch systematische Probieren.
Lösung:
für n = 6 ist W6 = ... ≈965,4 g
für n = 7 ist W7 = ... ≈ 1254,9 g
Nach etwas weniger als 7 Tagen ist die Algenmasse auf 1200 g gewachsen.
geg: Luftdruck in Meereshöhe W0=1013 hPa; Abnahme je 100m p%=-1,23%=-0,0123, also q=1-0,0123 = 0,9877; Höhe des Kilimandscharo 5895m = 58,95· 100 m, also x = 58,95 und des Mt. Everest 8848m = 88,48·100 m, also x = 88,48
ges: Luftdruck auf den Bergen, also Wx
Wx = W0 · qx
= 1013 · 0,987758,95
≈ 488,4 (hPa)
Rechne ebenso für den Mt Everest (Lösung: 338,9 hPa)
Gib die Funktionsgleichung bei GeoGebra ein. Wx = 1013 · 0,9887x:100
x steht hier für die Höhe, in der der Luftdruck berechnet werden soll.
Übung 6: Aufgabenfuchs
Bearbeite auf der Seite Aufgabenfuchs die vermischten Aufgaben.
31
32
33
34
35
36
Übung 7: ANTON-APP
Bearbeite die Übungen zum exponentiellen Wachstum in der ANTON-App.
3.2) Anwendung des exponentiellen Wachstums: Zinseszinsrechnung
Zinseszins
Zinseszins bedeutet, dass ein Startkapital Zinsen erwirtschaftet und diese Zinsen werden dem Vermögen am Jahresende gutgeschrieben. So werden in Zukunft diese Zinsen ebenfalls verzinst.
Das Kapital nach n Jahren wird mit der Formel
Kn = K0 ∙ qn mit q = 1 + p%
Bei diesem Kapitalwachstum handelt es sich um ein exponentielles Wachstum.
1 (Hier kannst du z.B. das Einstiegsbeispiel einstellen)
2 (Nutze die Zinseszinsformel Kn = K0 ∙ qn)
3 (Nutze die Zinseszinsformel Kn = K0 ∙ qn)
Übung 9
a) Ein Kapital von 2000€ wird zu einem Zinssatz von 2% angelegt. Berechne das Kapital nach 4 Jahren.
b) Ein Vermögen von 7500€ wird zu einem Zinssatz von 1,5% angelegt (mit Zinseszins). Berechne das Kapital nach 5 Jahren.
Formel umstellen nach K0 ("Wie hoch war das Startkapital...?):
Kn = K0 ∙ qn |:qn = K0
Formel umstellen nach q ("Mit welchem Prozentsatz ...?):
Kn = K0 ∙ qn |:K0 = qn | = q
Bestimme dann p% mit q = 1+p%, also q-1 = p%.
Formel umstellen nach n ("Nach wie vielen Jahren...?"):
Löse hier also durch systematisches Probieren!
Setze für n verschiedene Zahlen ein und teste, für welchen Wert von n die Gleichung erfüllt wird.
(Das Umstellen der Formel nach n erfordert die Anwendung des Logarithmus. Du darfst auch durch Logarithmieren lösen.)
Hefteintrag: Beispiele
Übertrage die Beispielaufgaben und die Lösungen aus dem Video in dein Heft. Starte das Video und stoppe es nach jedem Beispiel a), b) und c). Notiere vollständig und übersichtlich in deinem Heft.
Wähle aus den folgenden Aufgaben mindestens zwei Aufgaben aus und löse: Aufgaben auf der Seite Aufgabenfuchs
5
6
7
8
9
Übung 11 - Zinseszinsrechnung
Löse die Aufgabe aus dem Buch. Notiere die gegebenen und gesuchten Größen, stelle die Formel für die Zinsrechnung nach der gesuchten Größe um und berechne.
e) geg: ...
ges: q; n
q = 1 + p% = ...
Bestimme n durch Probieren.
Setze für n die Zahlen 1, 2, 3, ... ein und prüfe, für welchen Wert von n die Gleichung eine wahre Aussage ergibt.
Übung 12 - Anwendungsaufgaben zur Zinseszinsrechnung
Löse die Aufgaben aus dem Buch. Notiere die gegebenen und gesuchten Größen, stelle die Formel für die Zinsrechnung nach der gesuchten Größe um und berechne.
Vergleiche die beiden Angebote:
Angebot A:
geg: K0 = 10000€; p% = 2,25% = 0,0225, also q = 1,0225; n = 7 Jahre
ges: Kn
Kn = K0 ∙ qn Setze ein und berechne.
Angebot B:
geg: K0 = 10000€; p% = 1,5% = 0,015, also q = 1,015; n = 7 Jahre; auf das Kapital nach 7 Jahren K7 gibt es zusätzlich 10%.
Kn = K0 ∙ qn Setze ein und berechne.
Berechne dann das Endkapital, indem du auf K7 noch einmal einen Aufschlag von 10% rechnest:
Endkapital KEnde = K7 ∙ 1,1 ...
3.3) Anwendung des exponentiellen Wachstums: Halbwertszeit und Generationszeit (Verdopplungszeit)
Einstieg: evtl. Bierschaumzerfall (Untersuchtung auf leifiphysik)
Halbwertszeit
Die Halbwertszeit T gibt an, nach welcher Zeitspanne sich die Ausgangsmenge radioaktiven Materials halbiert hat.
Der Wachstumsfaktor ist also q=100% - 50% = 1 - 0,5 = 0,5 und
die Anzahl n der Zerfallsprozesse wird berechnet mit n = .
Das nachfolgende Applet stellt den Zerfallsprozess anschaulich dar:
Die Generationszeit T2 gibt an, nach welcher Zeitspanne sich die Ausgangsmenge / Population verdoppelt hat.
Der Wachstumsfaktor ist also q = 100%+100% = 1 + 1 = 2 und
die Anzahl n der Generationszeiten wird berechnet mit n = .
Das nachfolgende Applet stellt den Verdopplungsprozess anschaulich dar:
Generationszeit/ Verdopplungszeit (Bakterien)
Direkter Link: passt das Applet??
Applet von Hegius, R. Schürz
Übung 13 - Generationszeit und Halbwertszeit
Löse die Aufgaben aus dem Buch. Achte auf eine vollständige und übersichtliche Darstellung.
geg: W0 = 100%; W24 = 300% (verdreifacht); n = 24
ges: q (prozentuales Wachstum pro Tag); p%
...
Lösung: q=1,0468
Einschub: Logarithmieren
Ist beim exponentiellen Wachstum der Exponent n gesucht, kannst du diesen Wert durch systematisches Probieren erhalten. Eine genauere Möglichkeit ist das Logarithmieren.
Definition Logarithmus
Als Logarithmus wird der Exponent n bezeichnet, mit dem man die Basis b potenziert, um die Zahl a zu erhalten (a und b positiv):
bn=a, dann gilt logba = n
Beispiele:
log28 = 3; denn 23 = 8
log10100000 = 5; denn 105 = 100000
Für die Berechnung des Exponenten in den Aufgaben zum exponentiellen Wachstum nutzt du die folgende Tastenfolge:
5x = 25
x =
Cookies helfen uns bei der Bereitstellung von ZUM Projektwiki. Durch die Nutzung von ZUM Projektwiki erklärst du dich damit einverstanden, dass wir Cookies speichern.