Benutzer:Gabriel.cicek/Zufällige Ereignisse und ihre Wahrscheinlichkeit/Wahrscheinlichkeit bei mehrstufigen Laplace-Versuchen: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 14: Zeile 14:


:<math>P(A) = \frac{\text{Anzahl der günstigen} \text{ Ergebnisse}}{\mathrm{Anzahl\ aller\ m\ddot oglichen\ Ergebnisse}}</math>
:<math>P(A) = \frac{\text{Anzahl der günstigen} \text{ Ergebnisse}}{\mathrm{Anzahl\ aller\ m\ddot oglichen\ Ergebnisse}}</math>
Am Beispiel des Münzwurfes wäre das für das Ereignis "Nach jedem Wurf zeigt die Münze Zahl"
<big>P(Z,Z) = <math>\tfrac{1}{4} </math>, weil nur ein Ergebnis auf das Ereignis zutrifft und es insgesamt vier Ergebnisse gibt.





Version vom 12. September 2023, 17:59 Uhr


Merke


Sind bei einem mehrstufigen Zufallsversuch die Wahrscheinlichkeiten auf jeder Stufe gleich groß, so ist der Versuch ein mehrstufiger Laplace-Versuch.

Beispiel:
Es wird eine Münze zweimal geworfen. Mögliche Ergebnisse pro Wurf sind Kopf (K) und Zahl (Z).

Baumdiagramm und Wahrscheinlichkeiten der Stufen:

Baumdiagramm Münzwurf.jpg


Wie bei einstufigen Laplace- Zufallsversuchen, ist auch hier die Wahrscheinlichkeit für ein Ereignis:

Am Beispiel des Münzwurfes wäre das für das Ereignis "Nach jedem Wurf zeigt die Münze Zahl"

P(Z,Z) = , weil nur ein Ergebnis auf das Ereignis zutrifft und es insgesamt vier Ergebnisse gibt.