Benutzer:L.hodankov/lin Funktionen/y-Achsenabschnitt: Unterschied zwischen den Versionen
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 32: | Zeile 32: | ||
{{Box|Übung | {{Box|Übung |Lies in der nachfolgenden App jeweils den y-Achsenabschnitt b am Graphen bzw. in der Funktionsgleichung ab.|Üben}} | ||
{{LearningApp|app=pfeqzdf8521|width=100%|height=600px}} | {{LearningApp|app=pfeqzdf8521|width=100%|height=600px}} |
Aktuelle Version vom 25. August 2023, 09:53 Uhr
Diese Seite des Lernpfades wurde teilweise übernommen von der Seite Herta-Lebenstein-Realschule https://projekte.zum.de/wiki/Herta-Lebenstein-Realschule/Lineare_Funktionen_im_Aktiv-Urlaub . Der Autor ist Buss-Haskert. Diese Seite wurde veröffentlicht unter der Lizenz CC BY SA.
Herzlichen Dank!
Der y-Achsenabschnitt b
Lineare Funktionen: f(x) = m·x + b
Nachdem wir uns ausführlich mit der Bedeutung von m, also der Steigung einer linearen Funktion beschäftigt haben, schau noch einmal im Applet, welche Bedeutung der Parameter b für den Graphen der Funktion hat.
Damit du einen Eindruck von der Bedeutung des Parameters b (y-Achsenabschnitt) der Funktionsgleichung linearer Funktionen
f(x) = mx + b erhältst, verändere in der folgenden Animation mithilfe des Schiebereglers die Größe von b.
Vergleiche deine Beobachtungen mit der Lösung unter der Graphik.
Die Veränderung von b bewirkt eine Verschiebung der Geraden entlang der y-Achse.
Im Weiteren betrachten wir lineare Funktionen f(x) = mx + b.
Auch hier lernst du, wie du anhand eines Graphen die Funktionsgleichung bestimmst bzw. wie du zu einer Funktionsgleichung eine passende Gerade zeichnen kannst.