Benutzer:L.hodankov/Lineare Funktionen untersuchen: Unterschied zwischen den Versionen
(Inhalte übernommen) Markierung: 2017-Quelltext-Bearbeitung |
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 92: | Zeile 92: | ||
<br> | <br> | ||
{{Box|Übung 5|Löse auf der Seite [https://www.aufgabenfuchs.de/mathematik/funktion/funktion.shtml '''Aufgabenfuchs'''] die Aufgabe | {{Box|Übung 5|Löse auf der Seite [https://www.aufgabenfuchs.de/mathematik/funktion/funktion.shtml '''Aufgabenfuchs'''] die Aufgabe | ||
*18 | *18 |
Version vom 22. August 2023, 19:00 Uhr
Diese Seite des Lernpfades wurde teilweise übernommen von der Seite Herta-Lebenstein-Realschule https://projekte.zum.de/wiki/Herta-Lebenstein-Realschule/Lineare_Funktionen_im_Aktiv-Urlaub . Der Autor ist Buss-Haskert. Diese Seite wurde veröffentlicht unter der Lizenz CC BY SA.
Herzlichen Dank!
SEITE IM AUFBAU !!!
Funktionsgleichung und Funktionsgraph
f(x) = mx + b Bedeutung von m und b für den Funktionsgraphen
Damit du einen Eindruck von der Bedeutung der Parameter m (Steigung) und b (y-Achsenabschnitt) der Funktionsgleichung linearer Funktionen f(x) = mx + b erhältst, verändere in der folgenden Animation mithilfe der Schieberegler die Größe von m und b. Notiere deine Beobachtungen stichpunktartig.
In der Funktionsgleichung linearer Funktionen f(x)= m·x + b haben die Parameter m und b verschiedene Bedeutungen:
b ist der y-Achsenabschnitt, im Punkt P(0|b) schneidet die Gerade die y-Achse.
Nun schauen wir uns die Steigung m genauer an. Dazu wählen wir den y-Achsenabschnitt b = 0, die Gerade geht also durch den Ursprung (0|0).
Erinnerung: Diese Funktionen heißen "proportionale Funktionen", da ihr Graph eine Ursprungsgerade ist.
Die Steigung m
Anschaulich vorstellen kannst du dir, dass die Funktion steigt, wenn der Wanderer den Berg hochsteigen muss.
Fällt die Funktion, "fällt" der Wanderer bergab.
Um zu unterscheiden, ob eine Gerade steil oder flach verläuft (steigt oder fällt), beobachte in der nächsten Simulation den Maulwurf, der seinen Maulwurfshügel hinaufklettert.
Wenn die Steigung m steil ist, muss der Maulwurf sehr mutig sein!
Fülle den nachfolgenden Lückentext aus und übertrage ihn in deine Mappe (Goodnotes):
Die Steigung m einer proportionalen (linearen) Funktion f(x) = mx bestimmt den Verlauf der Geraden:
Für m > 0 steigt die Gerade und für m < 0 fällt die Gerade.
Die Gerade steigt flach für 0 < m < 1 und steil für m > 1.
Die Gerade fällt flach für -1 < m < 0 und steil für m < -1.
Öffne die App GeoGebra und gib die Funktionsgleichung ein. Der zugehörige Graph wird sofort angezeigt. Steigt oder fällt dieser, steil oder flach?
Teste dein Wissen mit einem Kahoot (im Unterricht).
Das Steigungsdreieck
Untersuche mithilfe der Animation in GeoGebra die Steigung von Geraden. Du kannst mit den Schiebereglern m verändern. Außerdem kannst du das Steigungsdreieck durch Verschieben der Punkte A und B verändern. Beobachte, was geschieht. Probiere aus.
Beobachtung: Die Steigung m einer linearen Funktion können wir mit einem Steigungsdreieck ermitteln und darstellen. Dazu zeichnen wir von einem beliebigen Punkt auf der Geraden ein Dreieck zu einem anderen Punkt auf der Geraden, bei dem die eine Seite parallel zur x-Achse liegt und die andere parallel zur y-Achse. Gehen wir dabei genau 1 Einheit in x-Richtung, steigt (oder fällt) der y-Wert immer um den Wert m, die Steigung.
Egal, wie das Steigungsdreieck gezeichnet wird, der Quotient aus bleibt immer gleich, dies ist die Steigung m.
Die Steigung m eines Graphen ablesen
Ist der Graph einer linearen Funktion gegeben (also eine Gerade im Koordinatensystem), kannst du die Steigung m mithilfe eines Steigungsdreiecks bestimmen.
Das nachfolgende Video erklärt, wie du bei einem gegebenen Graphen ein Steigungsdreieck einzeichnest und damit die Steigung m bestimmst.
1. Beispiel: m ist eine positive ganze Zahl (also eine natürliche Zahl):
2. Beispiel: m ist eine negative ganze Zahl:
3. Beispiel: m ist ein Bruch (positiv):
4. Beispiel: m ist ein Bruch (negativ):
Prüfe deine Lösungen anhand der eingezeichneten Steigungsdreiecke.
Teste dein Wissen mit einem Kahoot (im Unterricht).
x | 1 | 2 | 3 | ... |
y-Strecke | 5 | 10 | ... | |
y-Eintrittskosten | 13 | ... | ||
y-Trainingskosten | ... |
Aufgabensammlung der Klasse 8b: Proportionale Funktionen im Aktivurlaub
Erstelle eine Wertetabelle, zeichne den Graphen und gib die Funktionsgleichung an.
Aktivurlaub an der Nordsee:
1. Familie Mann fährt in den Urlaub an die Nordsee. Für 100 km benötigt ihr Auto ca. 7,8 Liter Benzin.
2. An einem Rastplatz legen sie eine Pause ein und essen eine Kleinigkeit. Ein Fischbrötchen kostet 1,50€.
3. Familie Mann möchte im Urlaub an der Nordsee surfen gehen. Für 4 Personen zahlen sie 40€ pro Stunde.
4. Nach dem Surfen gönnt sich die Familie jeweils eine Kugel Eis zu 1,10€.
5. Nachmittags gehen sie in der Nordsee schwimmen. Dabei schwimmen sie in 5 Minuten ca. 70m weit. Eine Freundin schwimmt gleichzeitig los, sie benötig für 25m 100 Sekunden. (Zeichne in ein Koordinatenkreuz)
Wanderurlaub:
6. Ein Sportgeschäft bietet Wanderstöcke an. Jeder Stock kostet 25€.
7. Familie H. unternimmt eine Wanderung. Für die Strecke von 4m benötigen sie 5 Sekunden.
Familie U. geht ebenfalls wandern. Sie schafft in 10 Minuten 500m. (Zeichne in ein Koordinatenkreuz.)
8. Für eine geführte Wanderung durch den Nationalpark zahlt die Familie 15€ pro Stunde.
9. Zum Picknick während der Wanderung gibt es Obst und Schokoriegel. Ein Riegel kostet 0,60€.
Reiterferien:
10. Familie M. macht Urlaub auf einem Reiterhof. Drei Runden Pony-Reiten um den See kosten 13,50€.
a) Eisenbahn
Höhenunterschied 40m
Horizontalunterschied 100m
m = = 4%.
Die Steigung lässt sich auch wie in Aufgabe 10 berechnen. m = m = =
a) m = , also f(x) = 0,05x
b) m = = 11, also ...
c) m = = 40 ct.
Welche Bedeutung haben die x- bzw. y-Achse? Erkläre.
Da es sich um Ursprungsgeraden handelt, müssen die Funktionsgleichungen die Form f(x)=mx haben (proportionale Funktionen). Bestimme die Steiung m mit einem geeigneten Steigungsdreieck.
Welchen Punkt kannst du jeweils ablesen?
m = =
m1 = ... = 0,08
Den Graphen zeichnen mit einem Steigungsdreieck
Ist die Funktionsgleichung einer proportionalen Funktion gegeben, kannst du den Graphen (also eine Ursprungsgerade) mithilfe eines Steigungsdreiecks zeichnen.
Das nachfolgende Video erklärt, wie du bei gegebener Steigung mit dem Steigungsdreieck den Graphen (Ursprungsgerade) einer proportionalen Funktion zeichnest.
Tipp zum Zeichnen von Steigungsdreiecken, wenn m ein Bruch ist (bei d bis i)
Gehe so viele Schritte, wie der NENNER angibt, nach RECHTS und
Zusammenfassung: Schau dazu das nachfolgende Video zu Steigungsdreiecken an: