Benutzer:Buss-Haskert/Terme/Terme vereinfachen: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
K (Tipps ergänzt)
Markierung: 2017-Quelltext-Bearbeitung
K (Lösungen und Tipps ergänzt)
Markierung: 2017-Quelltext-Bearbeitung
Zeile 101: Zeile 101:
* S. 104 Nr. 4
* S. 104 Nr. 4
* S. 104 Nr. 5
* S. 104 Nr. 5
* S. 104 Nr. 8
* S. 104 Nr. 8a
* S. 104 Nr. 10|Üben}}
* S. 104 Nr. 10|Üben}}
{{Lösung versteckt|1=Überlege "rückwärts": Welcher Term muss mit 7x multipliziert werden, damit das Produkt 28xy beträgt?<br> Zerlege 28xy in ein Produkt mit dem Faktor 7x:<br>
{{Lösung versteckt|1=Überlege "rückwärts": Welcher Term muss mit 7x multipliziert werden, damit das Produkt 28xy beträgt?<br> Zerlege 28xy in ein Produkt mit dem Faktor 7x:<br>
Zeile 114: Zeile 114:
|2=Tipp zu Nr. 4|3=Verbergen}}
|2=Tipp zu Nr. 4|3=Verbergen}}
{{Lösung versteckt|1=Multipliziere die Zahlen und Variablen getrennt:<br>
{{Lösung versteckt|1=Multipliziere die Zahlen und Variablen getrennt:<br>
c) 4x∙8xy∙5yb = 4∙5∙8∙b∙x∙x∙y∙y = 160bx²y² Sortiere die Variablen alphabetisch und schreibe als Potenz.
c) 4x∙8xy∙5yb &nbsp;&nbsp;&#124;Sortiere!<br>
= 4∙5∙8∙b∙x∙x∙y∙y &nbsp;&nbsp;&#124;Berechne das Produkt der Zahlen und fasse die Variablen zu Potenzen zusammen!<br>
= 160bx²y² |2=Tipp zu Nr. 5|3=Verbergen}}
{{Lösung versteckt|1=d) 25ab∙(-40bc)∙(-5c)&nbsp;&nbsp;&#124;Sortiere!<br>
= 25∙(-5)∙(-40)∙a∙b∙b∙c∙c &nbsp;&nbsp;&#124;Berechne das Produkt der Zahlen (Tipp: verliebte Zahlen!) und fasse die Variablen zu Potenzen zusammen!<br>
= -100∙(-40)∙ab²c²<br>
= 4000ab²c²|2=Tipp zu Nr. 10d|3=Verbergen}}
{{Box|Übung 6 (Division)|Schreibe die Aufgaben aus dem Buch ab in dein Heft und vereinfache.
{{Box|Übung 6 (Division)|Schreibe die Aufgaben aus dem Buch ab in dein Heft und vereinfache.
* S. 104 Nr. 7
* S. 104 Nr. 7
* S. 104 Nr. 8|Üben}}
* S. 104 Nr. 8b|Üben}}
 
===2.3 Vermischte Übungen===
===2.3 Vermischte Übungen===
|Nun folgen Übungen, bei denen du entscheiden musst, ob Terme addiert/subtrahiert oder multipliziert/dividiert werden. Lies noch einmal die Merksätze auf dieser Seite. Sortiere in der nachfolgenden LearningApp passend.
|Nun folgen Übungen, bei denen du entscheiden musst, ob Terme addiert/subtrahiert oder multipliziert/dividiert werden. Lies noch einmal die Merksätze auf dieser Seite. Sortiere in der nachfolgenden LearningApp passend.
{{LearningApp|app=po9r3vgf321|width=100%|height=500px}}
{{LearningApp|app=po9r3vgf321|width=100%|height=500px}}


{{Box| Übung 6 - Vermischte Übungen|Nun folgen Übungen, bei denen du entscheiden musst, ob Terme addiert/subtrahiert oder multipliziert/dividiert werden. Lies noch einmal die Merksätze auf dieser Seite. Wende dann die richtige Regel an!  
{{Box| Übung 7 - Vermischte Übungen|Nun folgen Übungen, bei denen du entscheiden musst, ob Terme addiert/subtrahiert oder multipliziert/dividiert werden. Lies noch einmal die Merksätze auf dieser Seite. Wende dann die richtige Regel an!  
* S. 104 Nr. 6
* S. 104 Nr. 6
* S. 104 Nr. 9
* S. 104 Nr. 11
* S. 104 Nr. 11
* S. 104 Nr. 12|Üben}}
* S. 104 Nr. 12|Üben}}
{{Lösung versteckt|1=Unterscheide zwischen den Rechenarten Strichrechung und Punktrechnung! Das Zusammenfassen der Terme ist unterschiedlich!<br>
a) 5+5 = 10 aber 5∙5 = 25<br>
c) a+a+a = 3a aber a∙a∙a = a³|2=Tipp zu Nr. 6|3=Verbergen}}
{{Lösung versteckt|1=a) a + 2a = 3a Das "hoch 2" bei a ist falsch, denn die Terme werden addiert, also dürfen gleichartige Terme zusammengefasst werden und die Terme a und 2a sind gleichartig.|2=Tipp zu Nr. 9|3=Verbergen}}


{{Box|Übung 7|Löse auf der Seite [https://mathe.aufgabenfuchs.de/gleichung/terme-vereinfachen.shtml '''Aufgabenfuchs'''] die Aufgaben
{{Box|Übung 8|Löse auf der Seite [https://mathe.aufgabenfuchs.de/gleichung/terme-vereinfachen.shtml '''Aufgabenfuchs'''] die Aufgaben
* 14
* 14
* 15|Üben}}
* 15|Üben}}

Version vom 9. Februar 2021, 08:52 Uhr

SEITE IM AUFBAU!!

2) Terme vereinfachen

EINSTIEGSAUFGABE NOCH ERGÄNZEN

2.1 Terme addieren und subtrahieren

Terme addieren und subtrahieren

Gleiche Variablen (gleichartige Terme) dürfen wir beim Addieren und Subtrahieren zusammenfassen.

Vorsicht: Unterschiedliche Variablen dürfen nicht addiert/subtrahiert werden!

Übertrage den Merksatz und die nachfolgenden Beispiele in dein Heft (Zeichnungen und Rechnungen):
X+x+x=3x.png
  x+x+x = 3x

X+y+x+y+x.png
X+x+x+y+y.png
  x+y+x+y+x = x+x+x+y+y = 3x + 2y


Vorsicht: x, x² und x³ können NICHT zusammengefasst werden, denn sie sind nicht gleichartig!
X x² und x³.png




Übung 1

Löse auf der Seite Aufgabenfuchs die Aufgaben

  • 1
  • 2
  • 3
  • 4
Übung 2

Schreibe die Aufgabe aus dem Buch ab in dein Heft und vereinfache.

  • S. 102 Nr. 1
  • S. 102 Nr. 2
  • S. 102 Nr. 3
  • S. 102 Nr. 6

Bist du noch fit beim Addieren und Subtrahieren von negativen Zahlen?
-s + 3s = 2s Geschichte: Du hast 1€ Schulden und bekommst 3 Taschengeld. Dann hast du nun 2€ Guthaben.

Erfinde eine Geschichte zu Aufgabe f


Übung 3

Schreibe die Aufgabe aus dem Buch ab in dein Heft. Kreise gleichartige Terme mit derselben Farbe ein und vereinfache anschließend. (Das Einkreisen ist PFLICHT!)

  • S. 102 Nr. 4
  • S. 102 Nr. 5
  • S. 102 Nr. 6
  • S. 102 Nr. 7
  • S. 102 Nr. 8
S.102 Nr.4 Lösung.png

Zusätzliche Übungsmöglichkeiten findest du in den Learningapps:


2.2 Terme multiplizieren und dividieren

Die Giraffen im Zoo sollen ein neues Außengehege bekommen. Dies soll 6-mal so lang und 4-mal so breit werden wie das Giraffenhaus.
Welche Fläche steht den Giraffen dann außen zur Verfügung?

Giraffengehege.png




Giraffengehege 1.png


Erinnerung: Flächeninhalt eines Rechtecks:
A = a∙b

Rechteck allgemein.png
Flächeninhalt (Rechteck) = Länge ∙ Breite

Länge des Rechtecks: 6x
Breite des Rechtecks: 4x

A = 6x ∙ 4x

A = 6∙x ∙ 4∙x    |sortiere, vertausche die Reihenfolge der Faktoren
   = 6∙4∙x∙x    |fasse zusammen
   = 24x²

Zähle die kleinen Quadrate, du erhältst ebenfalls 24x².


Terme multiplizieren und dividieren

Wir dürfen beim Multiplizieren die Reihenfolge der Faktoren vertauschen. Danach multiplizieren wir die Zahlen und fassen wir gleiche Faktoren zu Potenzen zusammen.

Beim Dividieren dividieren durch eine Zahl dividiere nur die Zahlen.

Übertrage den Merksatz und die nachfolgenden Beispiele in dein Heft.
Beispiele:
a) a∙a = a²
b) 4b∙0,2b = 4∙0,2∙b∙b = 0,8b²
c) 12x∙7y = 12∙7∙x∙y = 84xy
d) 0,5c∙3d²∙6c = 0,5∙3∙6∙c∙c∙d² = 9c²d² e) 6ab:3b = = 2∙a (gekürzt)



Übung 4

Löse auf der Seite Aufgabenfuchs die Aufgaben

  • 5
  • 6
  • 8
  • 10
  • 11
  • 12
  • 13


Übung 5 (Multiplikation)

Schreibe die Aufgabe aus dem Buch ab in dein Heft und vereinfache.

  • S. 104 Nr. 3
  • S. 104 Nr. 4
  • S. 104 Nr. 5
  • S. 104 Nr. 8a
  • S. 104 Nr. 10

Überlege "rückwärts": Welcher Term muss mit 7x multipliziert werden, damit das Produkt 28xy beträgt?
Zerlege 28xy in ein Produkt mit dem Faktor 7x:

28xy = 4∙7∙x∙y = 4y∙7x

Multipliziere die Zahlen und Variablen getrennt:
a) 2∙x∙4∙y   |Sortiere!
= 2∙4∙x∙y   |Berechne das Produkt der Zahlen!
= 8xy Lasse zum Schluss überflüssige Malpunkte weg.
f) t²∙5s∙t∙2s   |Sortiere!
= 5∙2∙s∙s∙t²∙t   |Berechne das Produkt der Zahlen und fasse die Variablen zu Potenzen zusammen! Erinnerung: t²∙t = t∙t∙t = t³

= 10s²t³ Sortiere die Variablen alphabetisch

{{Lösung versteckt|1=Multipliziere die Zahlen und Variablen getrennt:
c) 4x∙8xy∙5yb   |Sortiere!
= 4∙5∙8∙b∙x∙x∙y∙y   |Berechne das Produkt der Zahlen und fasse die Variablen zu Potenzen zusammen!
= 160bx²y² |2=Tipp zu Nr. 5|3=Verbergen}} {{Lösung versteckt|1=d) 25ab∙(-40bc)∙(-5c)  |Sortiere!
= 25∙(-5)∙(-40)∙a∙b∙b∙c∙c   |Berechne das Produkt der Zahlen (Tipp: verliebte Zahlen!) und fasse die Variablen zu Potenzen zusammen!
= -100∙(-40)∙ab²c²
= 4000ab²c²|2=Tipp zu Nr. 10d|3=Verbergen}}

Übung 6 (Division)

Schreibe die Aufgaben aus dem Buch ab in dein Heft und vereinfache.

  • S. 104 Nr. 7
  • S. 104 Nr. 8b

2.3 Vermischte Übungen

|Nun folgen Übungen, bei denen du entscheiden musst, ob Terme addiert/subtrahiert oder multipliziert/dividiert werden. Lies noch einmal die Merksätze auf dieser Seite. Sortiere in der nachfolgenden LearningApp passend.


Übung 7 - Vermischte Übungen

Nun folgen Übungen, bei denen du entscheiden musst, ob Terme addiert/subtrahiert oder multipliziert/dividiert werden. Lies noch einmal die Merksätze auf dieser Seite. Wende dann die richtige Regel an!

  • S. 104 Nr. 6
  • S. 104 Nr. 9
  • S. 104 Nr. 11
  • S. 104 Nr. 12

Unterscheide zwischen den Rechenarten Strichrechung und Punktrechnung! Das Zusammenfassen der Terme ist unterschiedlich!
a) 5+5 = 10 aber 5∙5 = 25

c) a+a+a = 3a aber a∙a∙a = a³
a) a + 2a = 3a Das "hoch 2" bei a ist falsch, denn die Terme werden addiert, also dürfen gleichartige Terme zusammengefasst werden und die Terme a und 2a sind gleichartig.


Übung 8

Löse auf der Seite Aufgabenfuchs die Aufgaben

  • 14
  • 15