E-Learning Boxplot/Lernpfad E-Learning Boxplot: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 1: | Zeile 1: | ||
'''<big>DIESE SEITE BEFINDET SICH NOCH IN DER ENTWICKLUNG</big>''' | |||
Die Klassen GHR11A und GHR11B haben eine Klassenarbeit im Fach Biologie geschrieben. Folgendermaßen sind die Klassenabreiten ausgefallen: | Die Klassen GHR11A und GHR11B haben eine Klassenarbeit im Fach Biologie geschrieben. Folgendermaßen sind die Klassenabreiten ausgefallen: | ||
{| class="wikitable" | {| class="wikitable" | ||
Zeile 64: | Zeile 66: | ||
'''Median:''' Der Median (oder Zentralwert) teilt einen Datensatz in zwei gleichgroße Hälften ein. Er ist die Zahl, die bei der Größe nach geordneten Zahlenwerten in der Mitte liegt. Hier können nun zwei Fälle unterschieden werden: | '''Median:''' Der Median (oder Zentralwert) teilt einen Datensatz in zwei gleichgroße Hälften ein. Er ist die Zahl, die bei der Größe nach geordneten Zahlenwerten in der Mitte liegt. Hier können nun zwei Fälle unterschieden werden: | ||
# Ist die Anzahl der Zahlenwerte ungerade, dann wird die mittlere Zahl ausgewählt. | #Ist die Anzahl der Zahlenwerte ungerade, dann wird die mittlere Zahl ausgewählt. | ||
# Ist die Anzahl der Zahlenwerte gerade, dann wird der Durchschnitt der beiden mittleren Werte genommen. | #Ist die Anzahl der Zahlenwerte gerade, dann wird der Durchschnitt der beiden mittleren Werte genommen. | ||
'''Quartile:''' Quartile teilen einen nach der Größe sortierten Datensatz in vier gleichgroße Viertel ein (ähnlich wie beim Median, der es in zwei Hälften unterteilt). Bei Quartilen interessieren uns vor allem das '''erste Quartil (Q1)''' und das '''dritte Quartil (Q3)'''. Das zweite Quartil haben wir bereits kennen gelernt, denn es ist der Median. Zur Bestimmung von Q1 und Q3 werden die durch des Median entstandenen Hälften noch einmal auf die selbe Weise unterteilt, wie wir es bereits beim Median gemacht haben: | '''Quartile:''' Quartile teilen einen nach der Größe sortierten Datensatz in vier gleichgroße Viertel ein (ähnlich wie beim Median, der es in zwei Hälften unterteilt). Bei Quartilen interessieren uns vor allem das '''erste Quartil (Q1)''' und das '''dritte Quartil (Q3)'''. Das zweite Quartil haben wir bereits kennen gelernt, denn es ist der Median. Zur Bestimmung von Q1 und Q3 werden die durch des Median entstandenen Hälften noch einmal auf die selbe Weise unterteilt, wie wir es bereits beim Median gemacht haben: | ||
# Ist die Anzahl der Zahlenwerte ungerade, dann wird die mittlere Zahl ausgewählt. | #Ist die Anzahl der Zahlenwerte ungerade, dann wird die mittlere Zahl ausgewählt. | ||
# Ist die Anzahl der Zahlenwerte gerade, dann wird der Durchschnitt der beiden mittleren Werte genommen | #Ist die Anzahl der Zahlenwerte gerade, dann wird der Durchschnitt der beiden mittleren Werte genommen | ||
Q1 wird häufig auch als unteres Quartil und Q3 als oberes Quartil bezeichnet. | Q1 wird häufig auch als unteres Quartil und Q3 als oberes Quartil bezeichnet. | ||
Zeile 78: | Zeile 80: | ||
Puh, das war viel auf einmal und sehr theoretisch. An einem Beispiel wird das ganze klarer. | Puh, das war viel auf einmal und sehr theoretisch. An einem Beispiel wird das ganze klarer. | ||
===== Beispiel 1 ===== | =====Beispiel 1===== | ||
Schauen wir uns doch einmal den Notenspiegel der GHR11B an. | Schauen wir uns doch einmal den Notenspiegel der GHR11B an. | ||
{| class="wikitable" | {| class="wikitable" | ||
Zeile 160: | Zeile 162: | ||
===== Quellen ===== | =====Quellen===== | ||
(1) Mathematik - Wirtschaft und Verwaltung (Fachhochschulreife | (1) Mathematik - Wirtschaft und Verwaltung (Fachhochschulreife |
Version vom 12. November 2020, 10:17 Uhr
DIESE SEITE BEFINDET SICH NOCH IN DER ENTWICKLUNG
Die Klassen GHR11A und GHR11B haben eine Klassenarbeit im Fach Biologie geschrieben. Folgendermaßen sind die Klassenabreiten ausgefallen:
Note | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Anzahl | 6 | 5 | 3 | 1 | 6 | 3 |
Note | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Anzahl | 0 | 2 | 15 | 7 | 0 | 0 |
Schauen Sie sich die Notenspiegel an und vergleichen Sie diese. Was fällt auf?
Welche Klasse ist besser (die sollen selbst drau
Aufgabe 1
Bestimmen Sie den Notendurchschnitt beider Klassen (arithmetisches Mittel).
Der Notendurchschnitt der GHR11A lautet: 3,2() (auf eine Nachkommastelle gerundet).
Der Notendurchschnitt der GHR11B lautet: 3,2() (auf eine Nachkommastelle gerundet).
Wir sehen also, dass das arithmetische Mittel das Problem nicht ausreichend beschreibt. Wir brauchen also ein anderes Instrument, um den Unterschied zwischen den Datensätzen darzustellen.
Der Boxplot
Ein Boxplot ist ein Diagramm, das die graphische Darstellung der wichtigsten fünf Lage- und Streuungsmaße anschaulich ermöglicht. Als erstes lernen wir nun diese fünf Maße kennen.
Minimum: Als Minimum wird der kleinste Wert in einem der Größe nach sortierten Datensatz bezeichnet.
Maximum: Als Maximum wird der größte Wert in einem der Größe nach sortierten Datensatz bezeichnet.
Spannweite: Als Spannweite wird der Abstand bzw. die Differenz zwischen dem Minimum und dem Maximum bezeichnet.
Median: Der Median (oder Zentralwert) teilt einen Datensatz in zwei gleichgroße Hälften ein. Er ist die Zahl, die bei der Größe nach geordneten Zahlenwerten in der Mitte liegt. Hier können nun zwei Fälle unterschieden werden:
- Ist die Anzahl der Zahlenwerte ungerade, dann wird die mittlere Zahl ausgewählt.
- Ist die Anzahl der Zahlenwerte gerade, dann wird der Durchschnitt der beiden mittleren Werte genommen.
Quartile: Quartile teilen einen nach der Größe sortierten Datensatz in vier gleichgroße Viertel ein (ähnlich wie beim Median, der es in zwei Hälften unterteilt). Bei Quartilen interessieren uns vor allem das erste Quartil (Q1) und das dritte Quartil (Q3). Das zweite Quartil haben wir bereits kennen gelernt, denn es ist der Median. Zur Bestimmung von Q1 und Q3 werden die durch des Median entstandenen Hälften noch einmal auf die selbe Weise unterteilt, wie wir es bereits beim Median gemacht haben:
- Ist die Anzahl der Zahlenwerte ungerade, dann wird die mittlere Zahl ausgewählt.
- Ist die Anzahl der Zahlenwerte gerade, dann wird der Durchschnitt der beiden mittleren Werte genommen
Q1 wird häufig auch als unteres Quartil und Q3 als oberes Quartil bezeichnet.
Der Quartilsabstand ist der Abstand bzw. die Differenz zwischen Q1 und Q3.
Puh, das war viel auf einmal und sehr theoretisch. An einem Beispiel wird das ganze klarer.
Beispiel 1
Schauen wir uns doch einmal den Notenspiegel der GHR11B an.
Note | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Anzahl | 0 | 2 | 15 | 7 | 0 | 0 |
Anstatt des Notenspiegels betrachten wir nun die Notenliste(?)
2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Das Minimum und das Maximum können wir schnell ablesen
Minimum: 2 Maximum: 4
Somit beträgt die Spannweite 2, dann die Differenz zwischen den Maximum (=4) und dem Minimum (=2) ist 2.
2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Quellen
(1) Mathematik - Wirtschaft und Verwaltung (Fachhochschulreife