Herta-Lebenstein-Realschule/Lernpfad Teilbarkeit: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 216: Zeile 216:


<ggb_applet id="sxnpbyfd" width="837" height="599" border="888888" />
<ggb_applet id="sxnpbyfd" width="837" height="599" border="888888" />
====''' Zusammengesetzte Teilbarkeit'''====
Schau dir das folgende Video an:{{#ev:youtube|x5q3njLmpe8}}
Überprüfe dein Wissen mit folgender Learning app:
{{LearningApp|app=pjirgcvun20|width=100%|height=400px}}
{{Box|Aufgabe|Bearbeite die Aufgaben 9 und 10 auf Seite 34.<br> Notiere und ergänze zu 12 a nach der Bearbeitung folgenden Satz: Eine Zahl ist durch 12 teilbar, wenn sie durch ___ und ___ teilbar ist.<br>
Notiere dasselbe für die Zahl 15 bei Nummer b.|Üben
}}
{{Lösung versteckt|1=Nr. 9<br>
a) 492; Quersumme: 4 + 9 + 2 = 15 => teilbar durch 3; die letzten beiden Ziffern, sprich 92 ist durch 4 teilbar      <br>
1260; Quersumme: 1 + 2 + 6 = 9 => teilbar durch 3; die letzten beiden Ziffern, sprich 60 ist durch 4 teilbar      <br> 
Eine Zahl ist durch 12 teilbar, wenn sie durch 3 und 4 teilbar ist.<br>
b) 540; Quersumme: 5 + 4 = 9 => teilbar durch 3; die letzte Ziffer ist eine 0, somit ist die Zahl durch 5 teilbar    <br>
5580 Quersumme: 5 + 5 + 8 + 0 = 18 => teilbar durch 3; die letzte Ziffer ist eine 0, somit ist die Zahl durch 5 teilbar      <br>
1560 Quersumme: 1 + 5 + 6 + 0 = 12 => teilbar durch 3; die letzte Ziffer ist eine 0, somit ist die Zahl durch 5 teilbar  <br>
7785  Quersumme: 7 + 7 + 8 + 5 = 27 => teilbar durch 3; die letzte Ziffer ist eine 5, somit ist die Zahl durch 5 teilbar  <br>
Eine Zahl ist durch 15 teilbar, wenn sie durch 3 und 5 teilbar ist.<br>
|2=Lösungen zu Nr. 9|3=Schließen}}
{{Lösung versteckt|Nr. 10a)<br>
2088 und 1332 <br>
Regel: Die Zahlen sind durch 4 und 9 teilbar, da die letzten beiden Zahlen durch 4 teilbar sind und die Quersumme durch 9 teilbar ist.<br> 
b) 36  <br>
 
|Lösungen zu Nr. 10|Schließen}}
Hausaufgabe: Aufgabe 8 auf Seite 34
====''' Primzahlen'''====
Eine Zahl heißt Primzahl, wenn sie genau zwei Teiler hat, die " eins" und sich selbst.
Beispiele:
Die ersten zehn Primzahlen sind 2; 3; 5; 7; 11; 13; 17; 23 und 29.<br>
Um zu prüfen, ob die Zahl 97 eine Primzahl ist, geht man die möglichen Teiler durch.<br>
Geschicktes Überlegen spart dabei viel Arbeit.<br>
*2 ist kein Teiler von 97. Deshalb sind auch die Vielfachen von 2, also 4; 6; 8; 10;... keine Teiler von 97.
*3 ist kein Teiler von 97. Deshalb sind auch die Vielfachen von 3, also 6; 9; 12;... keine Teiler von 97.
*5 ist kein Teiler von 97. Deshalb sind auch die Vielfachen von 5, also 10; 15; 20;... keine Teiler von 97.
*7 ist kein Teiler von 97. Denn 97 : 7 = 13 Rest 6.
*11 ist kein Teiler von 97. Denn 97 : 11 = 8 Rest 9. Zahlen, die größer als 11 sind, braucht man als Teiler nicht mehr ausprobieren. Die Zahlen bis 10 sind aber schon überprüft.
Schau dir das folgende Video an:{{#ev:youtube|rs7G5srTni4}}
====''' Das Sieb des Eratosthenes'''====
{{Box|Aufgabe|Finde alle Primzahlen von 1 bis 1000.
Gehe auf den folgenden Link und bearbeite das Sieb des Eratosthenes.<br>
Stelle dazu in der Mitte Entfernen ein und klicke auf Vielfache. <br>
Gehe nun die einzelnen Primzahlen durch, indem Du immer wieder auf Vielfache drückst. Beobachte was passiert.
Beschreibe im Heft kurz deine Beobachtungen.|Üben
}}
https://www.arndt-bruenner.de/mathe/scripts/eratosthenes.htm
{{Box|Aufgabe|Folge dem untenstehenden Link, nimm dir einen Würfel und spiele mit deinem Partner.|Üben
}}
https://www.mathe-online.at/materialen/lisa.hauszer/files/Primzahlen/Primzahlen_HimmelUnd_Spiel_LH.pdf
{{Box|Übung: Primzahlen|Wende dein Wissen über die Primzahlen an und löse die Aufgaben 1–4 auf Seite 35|Üben
}}
Primzahlen und Primfaktorzerlegung

Version vom 1. November 2020, 22:21 Uhr

Lernpfad zu den Teilbarkeitsregeln
Gummi-bears-8467 1920.jpg
Teilbarkeitsregeln

Im folgenden kannst Du dir die Teilbarkeitsregeln selbständig erarbeiten

Die Teilbarkeitsregeln

1. Die Endziffernregeln

2. Die Quersummenregeln


1. Die Endziffernregeln

Wie das Wort besagt geht es um die letzte Ziffer einer Zahl. Diese Ziffer bestimmt die jeweilige Teilbarkeit.


Info

Eine Zahl ist nur dann

  • durch 2 teilbar, wenn die Endziffer, 2; 4; 6; 8 oder 0 ist
  • durch 5 teilbar, wenn die Endziffer 5 oder 0 ist
  • durch 10 teilbar, wenn die Endziffer 0 ist
  • durch 4 teilbar, wenn die zwei letzten Ziffern eine durch 4 teilbare Zahl bilden

Beispiele:

3256 ist durch 2 teilbar, da die Endziffer 8 durch 2 teilbar ist.

3256 ist durch 4 teilbar, da 56 durch 4 teilbar ist.

3256 ist nicht durch 5 teilbar, da die Endziffer weder eine 0 noch eine 5 ist.

3250 ist durch 10 teilbar, da die Endziffer eine 0 ist.

3250 ist nicht durch 4 teilbar, da 50 nicht durch 4 teilbar ist.



Übung 1: Endziffernregeln
Wende dein Wissen über die Endziffernregeln in den LearningApps an







Aufgabe
Löse im Buch die Nr.: 2, 3, 4, 5 und 6 auf Seite 32

2. Die Quersummenregeln


Info

Die Summe der Ziffern einer Zahl heißt Quersumme.

Eine Zahl ist nur dann

  • durch 3 teilbar, wenn ihre Quersumme durch 3 teilbar ist.
  • durch 9 teilbar, wenn ihre Quersumme durch 9 teilbar ist.

Beispiele:

1728 ist durch 3 und 9 teilbar, da die Quersumme 1 + 7 + 2 + 8 = 18 durch 3 und 9 teilbar ist.

7467 ist durch 3, aber nicht durch 9 teilbar, da die Quersumme 7 + 4 + 6 + 7 = 24 durch 3, aber nicht durch 9 teilbar ist.

2615 ist weder durch 3 noch durch 9 teilbar, denn die Quersumme 14 ist weder durch 3 noch durch 9 teilbar.



Übung 1: Quersummenregeln
Wende dein Wissen über die Quersummenregeln in den LearningApps an





Aufgabe
Löse im Buch die Nr.: 1, 2, 3, 4, 5 und 6 auf den Seiten 33 und 34


Hier kannst du noch einmal üben. Stelle die Schwierigkeit für dich passend ein.

Zusammengesetzte Teilbarkeit

Schau dir das folgende Video an:

Überprüfe dein Wissen mit folgender Learning app:



Aufgabe

Bearbeite die Aufgaben 9 und 10 auf Seite 34.
Notiere und ergänze zu 12 a nach der Bearbeitung folgenden Satz: Eine Zahl ist durch 12 teilbar, wenn sie durch ___ und ___ teilbar ist.

Notiere dasselbe für die Zahl 15 bei Nummer b.

Hausaufgabe: Aufgabe 8 auf Seite 34

Primzahlen

Eine Zahl heißt Primzahl, wenn sie genau zwei Teiler hat, die " eins" und sich selbst.

Beispiele:

Die ersten zehn Primzahlen sind 2; 3; 5; 7; 11; 13; 17; 23 und 29.

Um zu prüfen, ob die Zahl 97 eine Primzahl ist, geht man die möglichen Teiler durch.

Geschicktes Überlegen spart dabei viel Arbeit.

  • 2 ist kein Teiler von 97. Deshalb sind auch die Vielfachen von 2, also 4; 6; 8; 10;... keine Teiler von 97.
  • 3 ist kein Teiler von 97. Deshalb sind auch die Vielfachen von 3, also 6; 9; 12;... keine Teiler von 97.
  • 5 ist kein Teiler von 97. Deshalb sind auch die Vielfachen von 5, also 10; 15; 20;... keine Teiler von 97.
  • 7 ist kein Teiler von 97. Denn 97 : 7 = 13 Rest 6.
  • 11 ist kein Teiler von 97. Denn 97 : 11 = 8 Rest 9. Zahlen, die größer als 11 sind, braucht man als Teiler nicht mehr ausprobieren. Die Zahlen bis 10 sind aber schon überprüft.

Schau dir das folgende Video an:

Das Sieb des Eratosthenes

Aufgabe

Finde alle Primzahlen von 1 bis 1000. Gehe auf den folgenden Link und bearbeite das Sieb des Eratosthenes.
Stelle dazu in der Mitte Entfernen ein und klicke auf Vielfache.
Gehe nun die einzelnen Primzahlen durch, indem Du immer wieder auf Vielfache drückst. Beobachte was passiert.

Beschreibe im Heft kurz deine Beobachtungen.


https://www.arndt-bruenner.de/mathe/scripts/eratosthenes.htm


Aufgabe
Folge dem untenstehenden Link, nimm dir einen Würfel und spiele mit deinem Partner.

https://www.mathe-online.at/materialen/lisa.hauszer/files/Primzahlen/Primzahlen_HimmelUnd_Spiel_LH.pdf


Übung: Primzahlen
Wende dein Wissen über die Primzahlen an und löse die Aufgaben 1–4 auf Seite 35

Primzahlen und Primfaktorzerlegung