Buss-Haskert/Quadratische Gleichungen: Unterschied zwischen den Versionen
K (Lösungen ergänzt) Markierung: 2017-Quelltext-Bearbeitung |
K (Formatierungen) Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 178: | Zeile 178: | ||
3. binomische Formel (a + b)(a - b) = a² - b²<br> | 3. binomische Formel (a + b)(a - b) = a² - b²<br> | ||
Du benötigst für die quadratische Ergänzung die 1. und 2. binomische Formel.<br> | Du benötigst für die quadratische Ergänzung die 1. und 2. binomische Formel.<br> | ||
{{#ev:youtube|EYbvhWEG6kE|420|center}}|2= | |2=Erinnerung: Binomische Formeln|3=Verbergen}} | ||
{{Lösung versteckt|1={{#ev:youtube|EYbvhWEG6kE|420|center}}|2=Lied zu den binomische Formeln|3=Verbergen}}|2=Tipp zu 2|3=Verbergen}} | |||
{{Lösung versteckt|1=Erkennst du, dass der Term ein Binom ist (2.binomische Formel)? x² - 10x + 25 = (x - 5)²<br> | {{Lösung versteckt|1=Erkennst du, dass der Term ein Binom ist (2.binomische Formel)? x² - 10x + 25 = (x - 5)²<br> | ||
Wandle also den Term um und löse durch Wurzelziehen:<br> | Wandle also den Term um und löse durch Wurzelziehen:<br> | ||
Zeile 194: | Zeile 195: | ||
x² + 10x + 30 = 0 Der Anfang des Terms x² + 4x passt zur ersten binomische Formel. Leider passt die Zahl -5 nicht. Forme die Gleichung zunächst so um, dass der Teil der binomische Formel auf einer Seite und die Zahl auf der anderen Seite der Gleichung steht. Ergänze dann den für die binomische Formel fehlenden Term. Löse diese Gleichung dann wie in den Beispielen 1 - 3.<br> | x² + 10x + 30 = 0 Der Anfang des Terms x² + 4x passt zur ersten binomische Formel. Leider passt die Zahl -5 nicht. Forme die Gleichung zunächst so um, dass der Teil der binomische Formel auf einer Seite und die Zahl auf der anderen Seite der Gleichung steht. Ergänze dann den für die binomische Formel fehlenden Term. Löse diese Gleichung dann wie in den Beispielen 1 - 3.<br> | ||
x² + 6x - 16 = 0 |+16<br> | x² + 6x - 16 = 0 |+16<br> | ||
x² + 6x = 16 |quadratische Ergänzung: Es fehlt für die 1. bin. | x² + 6x = 16 |quadratische Ergänzung: Es fehlt für die 1. bin. Formel <math>\frac{6}{2}^2</math>=3²<br> | ||
x² + 6x <span style="color:red">+ 9</span> = 16 <span style="color:red">+ 9</span> |1. bin. Formel<br> | x² + 6x <span style="color:red">+ 9</span> = 16 <span style="color:red">+ 9</span> |1. bin. Formel<br> | ||
(x + 3)² = 25 & | (x + 3)² = 25 |<math>\surd</math><br> | ||
x + 3 = 5 oder x + 3 = -5 <br> | x + 3 = 5 oder x + 3 = -5 <br> | ||
x = 2 oder x = -8<br>|2=Tipp zu 4|3=Verbergen}} | x = 2 oder x = -8<br>|2=Tipp zu 4|3=Verbergen}} |
Version vom 21. Oktober 2020, 18:10 Uhr
SEITE IM AUFBAU !!!
In der Fahrschule lernst du eine Faustformel für die Berechnung des Bremsweges:
Bremsweg in m: sB = ()²
Hier handelt es sich um eine quadratische Gleichung, da die Variable v quadriert wird (v²).
Berechne den Bremsweg, wenn das Auto mit einer Geschwindigkeit von 30km/h fährt, also v=30 und wenn es mit einer Geschwindigkeit von 50km/h unterwegs ist.
Was fällt dir auf?
Vor Schulen oder Kindergärten sollten die Bremswege möglichst kurz sein. Wie schnell darf ein Auto fahren, damit der Bremsweg höchstens 4m beträgt?
Du siehst: Mathe ist überall! Du erarbeitest nun die Grundlagen zum Lösen solcher quadratischer Gleichungen.
1) Was sind quadratische Gleichungen?
Quadratische Gleichungen sind Gleichungen, in denen die Variable in zweiter Potenz (also z.B. x²) vorkommt.
Erinnerung: Lineare Gleichungen sind Gleichungen, in denen die Variable nur in erster Potenz (also z.B. x = x1) vorkommt.
Entscheide in der nachfolgenden LearningApp, ob es sich um eine quadratische Gleichung handelt oder nicht.
2) Wie löse ich quadratische Gleichungen?
Quadratische Gleichungen kannst du zeichnerisch und rechnerisch lösen. Nutze für die zeichnerische Lösung GeoGebra und prüfe so immer deine rechnerischen Lösungen. Es gibt verschiedene Formen quadratischer Gleichungen. Die Lösungsstrategie hängt von der Form ab. Dies erklären die folgenden Kapitel.
2.1) Rein quadratische Gleichungen lösen
In der obigen Faustformel kommt die Variable v nur in quadratischer Form vor, also nur als v². Solche Gleichungen heißen "rein quadratisch". Sie haben immer die Form ax² = d (hier umgeformt v² = sB)
Diese Gleichungen zu lösen hast du schon in der 9. Klasse gelernt. Wiederhole dein Wissen mithilfe der nachfolgenden Aufgaben.
Was ist die bei der letzten Aufgabe aufgefallen?
In den obigen Aufgaben erkennst du, dass eine rein quadratische Gleichung mehrere Lösungen haben kann:
zwei Lösungen, eine Lösung oder keine Lösung.
Wovon hängt die Anzahl der Lösungen ab?
Erkläre und begründe mithilfe der nachfolgenden Beispiele:
1. x² = 169 |
2. 2x² + 10 = 10 |
3. -3x² = 108 |
Du kannst diese Gleichungen auch grafisch lösen:
Beispiel:
1. x² = 169 kannst du auch schreiben als x² - 169 = 0. Du berechnest also die Nullstellen der Funktion f(x) = x² - 169.
Übertrage die Zeichnung in dein Heft und erkläre die grafische Lösung.
Wie hilft dir das nachfolgende Applet bei der Lösung der Gleichung 0,5x² = 4,5 ? Erkläre im Heft!
2.2) Gemischt quadratische Gleichungen lösen
Eine Gleichung heißt "gemischt quadratisch", wenn die Variable in der zweiten Potenz (z.B. x²) und in einfacher Potenz (z.B. x) vorkommt.
2.2.1) Gleichungen der Form x² + bx = 0
Eine Gleichung heißt "gemischt quadratisch", wenn die Variable in der zweiten Potenz (z.B. x²) und in einfacher Potenz (z.B. x) vorkommt.
Beginnen wir mit dem besonderen Fall, dass die Gleichung die Form x² + bx = 0 hat, es also keinen Term "ohne" Variable gibt und eine Seite den Wert 0 hat.
2.2.2) Gleichungen der Form x² + bx + c = 0
Kannst du die folgenden Gleichungen lösen? Probiere aus und vergleiche deine Ideen mit denen deines Partners.
1. (x + 3)² = 0
2. x² + 6x + 9 = 0
3. x² -10x + 25 = 0
4. x² +12x - 64 = 0
Kommt in der Gleichung neben x² und x auch noch ein Term ohne x vor, löst du die Gleichung mithilfe der quadratischen Ergänzung.