Herta-Lebenstein-Realschule/Die Scheitelpunktform quadratischer Funktionen sportlich erarbeiten: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
(Übungen im Buch ergänzt)
K (Übungen ergänzt)
Markierung: 2017-Quelltext-Bearbeitung
Zeile 110: Zeile 110:
{{LearningApp|app=puwipwqg220|width=100%|height=800px}}
{{LearningApp|app=puwipwqg220|width=100%|height=800px}}


{{Box|Übung|Bearbeite im Buch S.15 die Einstiegsaufgabe oben in deinem Heft. Stelle jeweils eine Wertetabelle auf und zeichne den Graphen.|Üben}}
{{Box|Übung|Bearbeite im Buch S.15 die Einstiegsaufgabe oben in deinem Heft. Stelle jeweils eine Wertetabelle auf und zeichne die Graphen. Nutze verschiedene Farben.|Üben}}




Zeile 135: Zeile 135:


{{LearningApp|app=pd7atv6ak20|width=100%|height=400px}}
{{LearningApp|app=pd7atv6ak20|width=100%|height=400px}}
{{Box|Übung|Löse Buch S. 13 Nr. 4a) und b). Erstelle jeweils eine Wertetabelle und zeichne die Graphen. Nutze verschiedene Farben.|Üben}}




Zeile 142: Zeile 144:
{{LearningApp|app=pq6e32wtk20|width=100%|height=400px}}
{{LearningApp|app=pq6e32wtk20|width=100%|height=400px}}


{{Box|Üben|Löse Buch S. 16 Nr. 1, 2 und 3|Üben}}
Kontrolliere deine Lösungen mit [https://www.geogebra.org/graphing?lang=de GeoGebra].
__INHALTSVERZEICHNIS_ERZWINGEN__
__INHALTSVERZEICHNIS_ERZWINGEN__

Version vom 9. August 2020, 18:34 Uhr

Lernpfad Scheitelpunktform quadratische Funktionen sportlich erarbeiten
Basketball-779456 1920.jpg
Die Bedeutung der Parameter a, d und e der Scheitelpunktform quadratische Funktionen f(x) = a (x + d)² + e wird mithilfe dreier "Sportler" erarbeitet.


1. Anton: f(x) = a

Anton ist sehr sportlich, er spielt Basketball:


Bedeutung des Parameters a
Welche Rolle spielt anton für den Graphen der Parabel?


Öffne die Seite und verändere a mit dem Schieberegler.

GeoGebra


Welche Auswirkungen hat der anton auf das Schaubild der Normalparabel?



Bedeutung des Parameters a
Schreibe den Lückentext in dein Heft ab.


Wende dein Wissen an.
Kreuze die richtige Aussage an und ordne den Graphen die passende Funktionsgleichung zu.


1. Beschreibe den Verlauf der Parabel f(x) = 5x2

(nach oben geöffnet) (!nach unten geöffnet) (gestreckt) (!gestaucht)

2. Beschreibe den Verlauf der Parabel f(x) = -3x2

(!nach oben geöffnet) (nach unten geöffnet) (gestreckt) (!gestaucht)

3. Beschreibe den Verlauf der Parabel f(x) = 0,5x2

(nach oben geöffnet) (!nach unten geöffnet) (!gestreckt) (gestaucht)

4. Beschreibe den Verlauf der Parabel f(x) = -x2

(!nach oben geöffnet) (nach unten geöffnet) (!gestreckt) (gestaucht)



F(x) = x².png F(x) = -x².png F(x) = 0.5x².png F(x) = -0.5x².png F(x) = 2x².png F(x) = -2x².png F(x) = 5x².png F(x) = 0.2x².png
y = x2   y = - x2   y = 0,5x2  y = -0,5x2  y = 2x2   y = -2x2  y = 5x2  y = x2


Übung
Bearbeite Buch S. 13 Nr. 1 und 2 im Heft.
Du kannst die Wertetabellen wie hier gezeigt zusammenfassen:
S.13 Nr.1 Hilfe.png

Kontrolliere deine Lösungen mit GeoGebra.


2. Detlef: f(x) = (x + d

Detlef ist ebenfalls sportlich, allerdings auch ein wenig dusselig. Er läuft beim Sprint immer in die entgegengesetzte Richtung.




Bedeutung des Parameters d
Welche Rolle spielt detlef ?

Öffne die Seite und verändere d mit dem Schieberegler.

GeoGebra

Welche Auswirkungen hat detlf auf das Schaubild der Normalparabel?



Bedeutung des Parameters d
Schreibe den ausgefüllten Lückentext zur Bedeutung des Parameters d für in dein Heft ab.


Wende dein Wissen an
Ordne den Funktionsgraphen die passenden Funktionsgleichungen zu.



Übung
Bearbeite im Buch S.15 die Einstiegsaufgabe oben in deinem Heft. Stelle jeweils eine Wertetabelle auf und zeichne die Graphen. Nutze verschiedene Farben.


3. Emil: f(x) = x² + e

emil ist ebenfalls sehr sportlich:

Er kann sehr hoch springen, ebenso gut kann er tauchen. Emil beim Hochsprung

Bedeutung des Parameters e
Welche Rolle spielt emil ?

Öffne die Seite und verändere e mit dem Schieberegler.

GeoGebra



Welche Auswirkungen hat emil auf das Schaubild der Normalparabel?


Bedeutung des Parameters e
Schreibe den ausgefüllten Lückentext zur Bedeutung des Parameters e für in dein Heft ab.


Wende dein Wissen an
Ordne den Funktionsgraphen die passenden Funktionsgleichungen zu.



Übung
Löse Buch S. 13 Nr. 4a) und b). Erstelle jeweils eine Wertetabelle und zeichne die Graphen. Nutze verschiedene Farben.




Scheitelpunktform quadratischer Funktionen - Wende dein Wissen an.
Die Scheitelpunktform quadratischer Funktionen lautet f(X) = a(x + d)² + e. Du hast die Bedeutung der Parameter a(nton), d(etlef) und e(mil) erarbeitet. Wende dein Wissen in den nachfolgenden Übungen an.



Üben
Löse Buch S. 16 Nr. 1, 2 und 3

Kontrolliere deine Lösungen mit GeoGebra.