Ein Sportplatz mit einer 400-m-Laufbahn soll so angelegt werden, dass das Fußballfeld möglichst groß ist.
Die seitlichen Kurven des Sportplatzes sollen Halbkreise sein.
Schritt 1:
Gegeben ist die Länge der Laufbahn um den Sportplatz herum, also der Umfang des Sportplatzes. Maximiert werden soll die Größe des Fussballfeldes, also der rechteckige Flächeninhalt innerhalb des Sportplatzes.
Erstelle eine Skizze dazu:
Schritt 2:
Die Formel zum Flächeninhalt ist . Dies ist deine Hauptbedingung.\
Deine Nebenbedingung findest du im Umfang wieder: . Diese kannst du nach b umstellen und erhälst:
Setze nun deine Nebenbedingung in deine Hauptbedigung ein und erhalte die Zielfunktion:
.
Für diese Funktion kann b nur zwischen 0 und 200 liegen, also
Schritt 3:
Berechne nun deinen Extremwert. Bilde dazu die Ableitungen:
Mit der notwendigen Bedingung erhälst du dann . Mit der hinreichenden Bedindung folgt , somit erfüllt alle Bedingungen
Berechne nun und den Flächeninhalt:
- und
Der Flächeninhalt des Fussballfeldes kann also mit einer Breite von
und einer Höhe von
auf
maximiert werden.