Ein Sportplatz mit einer 400-m-Laufbahn soll so angelegt werden, dass das Fußballfeld möglichst groß ist.
Die seitlichen Kurven des Sportplatzes sollen Halbkreise sein.
Schritt 1:
Gegeben ist die Länge der Laufbahn um den Sportplatz herum, also der Umfang des Sportplatzes. Maximiert werden soll die Größe des Fussballfeldes, also der rechteckige Flächeninhalt innerhalb des Sportplatzes.
Schritt 2:
Die Formel zum Flächeninhalt ist . Dies ist deine Hauptbedingung.\
Deine Nebenbedingung findest du im Umfang wieder: . Diese kannst du nach b umstellen und erhälst:
Setze nun deine Nebenbedingung in deine Hauptbedigung ein und erhalte die Zielfunktion:
.
Für diese Funktion kann b nur zwischen 0 und 200 liegen, also
Schritt 3:
Berechne nun deinen Extremwert. Bilde dazu die Ableitungen:
Mit der notwendigen Bedingung erhälst du dann . Mit der hinreichenden Bedindung folgt , somit erfüllt alle Bedingungen
Berechne nun und den Flächeninhalt:
- und
Der Flächeninhalt des Fussballfeldes kann also mit einer Breite von
und einer Höhe von
auf
maximiert werden.