Herta-Lebenstein-Realschule/Die Scheitelpunktform quadratischer Funktionen sportlich erarbeiten: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 47: | Zeile 47: | ||
|- | |- | ||
|<strong>f(x) = x<sup>2</sup> </strong> ||<strong>f(x) = - x<sup>2</sup> </strong>||<strong>f(x) = 0,5x<sup>2</sup></strong>||<strong>f(x) = -0,5x<sup>2</sup></strong>||<strong>f(x) = 2x<sup>2</sup> </strong>||<strong>f(x) = -2x<sup>2</sup> | |<strong>f(x) = x<sup>2</sup> </strong> ||<strong>f(x) = - x<sup>2</sup> </strong>||<strong>f(x) = 0,5x<sup>2</sup></strong>||<strong>f(x) = -0,5x<sup>2</sup></strong>||<strong>f(x) = 2x<sup>2</sup> </strong>||<strong>f(x) = -2x<sup>2</sup></strong> | ||
|} | |} | ||
</div> | </div> | ||
2. '''<big>D</big>'''etlef: f(x) = (x + '''<big><big><big>d</big></big></big>''')² | 2. '''<big>D</big>'''etlef: f(x) = (x + '''<big><big><big>d</big></big></big>''')² |
Version vom 10. April 2020, 10:05 Uhr
Lernpfad Scheitelpunktform quadratische Funktionen sportlich erarbeiten | ||
Die Parameter a, d und e der Scheitelpunktform quadratische Funktionen f(x) = a (x + d)² + e werden mithilfe dreier "Sportler" erarbeiten | ||
- Anton: f(x) = ax²
Anton ist sehr sportlich, er spielt Basketball:
Öffne die Seite und verändere a.

Welche Auswirkungen hat der anton auf das Schaubild der Normalparabel?
2. Detlef: f(x) = (x + d)²
Detlef ist ebenfalls sportlich, allerdings auch ein wenig dusselig. Er läuft beim Sprint immer in die entgegengesetzte Richtung.
Öffne die Seite und verändere d.

Welche Auswirkungen hat detlf auf das Schaubild der Normalparabel?
3. Emil: f(x) = x² + e
emil ist ebenfalls sehr sportlich:
Er kann sehr hoch springen, ebenso gut kann er tauchen.
Öffne die Seite und verändere e.

Welche Auswirkungen hat emil auf das Schaubild der Normalparabel?