Julius-Echter-Gymnasium/Mathematik/Erweitern und Kürzen: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 20: | Zeile 20: | ||
Bsp.: Erweitere den Bruch <math>\frac{2}{5}</math> mit 20.<br /> | Bsp.: Erweitere den Bruch <math>\frac{2}{5}</math> mit 20.<br /> | ||
<math>1= \frac{2}{5}= \frac{2\cdot20}{5\cdot20} = \frac{40}{100} </math> | <math>1=\frac{2}{5}= \frac{2\cdot20}{5\cdot20}=\frac{40}{100} </math> | ||
<br /> | <br /> | ||
Version vom 25. Januar 2020, 19:02 Uhr
Was ist überhaupt ein Bruch?
Ganz einfach: Ein Bruch ist ein Teil eines Ganzen!
So repräsentiert z.B. der Bruch 3 Teile eines Ganzen, das aus insgesamt 4 Teilen besteht.
Als Bruchrechnung bezeichnet man das Rechnen mit gemeinen Brüchen in der „Zähler-Bruchstrich-Nenner-Schreibweise“.
Wenn du mit Brüchen rechnen willst, musst du in der Lage sein, sie richtig zu kürzen oder zu erweitern. Das brauchst du immer wieder für die verschiedenen Bruchrechnungen. Also pass gut auf!
-> Erweitern und Kürzen:
Erweitern: Multipliziere Zähler und Nenner des Bruches mit derselben natürlichen Zahl, welche nicht 0 sein darf!
Bsp.: Erweitere den Bruch mit 20.
Kürzen: Dividiere Zähler und Nenner des Bruches durch dieselbe natürliche Zahl, welche nicht 0 sein darf!
Bsp.: Kürze den Bruch soweit es geht.
Beim Erweitern bzw. Kürzen muss man Zähler und Nenner mit der gleichen Zahl multiplizieren bzw. dividieren.
Nun gibt es hier ein kleines Beispiel, mit dem du testen kannst, ob du die Grundregeln verstanden hast. Viel Spaß!
Zuordnungs-Quiz
|
Hier gibt es nun weitere Aufgaben für dich zum Üben:
Aufgabe 1
Aufgabe 2
Aufgabe 3