Benutzer:Philipp WWU-5/Aufgabe 6: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 6: Zeile 6:


{{Lösung versteckt|1 = Für <math>f(x) = mx + n</math> ist <math>n</math> der <math>y</math>-Achsenabschnitt und <math>m</math> die Steigung.|2=Tipp 1|3=Tipp 1}}
{{Lösung versteckt|1 = Für <math>f(x) = mx + n</math> ist <math>n</math> der <math>y</math>-Achsenabschnitt und <math>m</math> die Steigung.|2=Tipp 1|3=Tipp 1}}
|Arbeitsmethode}}


{{Box|Aufgabe 6b): Finde Paare*|Ordne den gegebenen linearen Gleichungen die zugehörige Gerade zu. Beachte: Nicht zu jeder Gleichung ist eine Gerade gegeben.
{{Box|Aufgabe 6b): Finde Paare*|Ordne den gegebenen linearen Gleichungen die zugehörige Gerade zu. Beachte: Nicht zu jeder Gleichung ist eine Gerade gegeben.

Version vom 25. Oktober 2019, 05:17 Uhr

Eine lineare Gleichung einer Geraden zuordnen

Aufgabe 6a): Finde Paare

Ordne den gegebenen linearen Gleichungen die zugehörige Gerade zu. Beachte: Nicht zu jeder Gleichung ist eine Gerade gegeben.



Für ist der -Achsenabschnitt und die Steigung.


Aufgabe 6b): Finde Paare*

Ordne den gegebenen linearen Gleichungen die zugehörige Gerade zu. Beachte: Nicht zu jeder Gleichung ist eine Gerade gegeben.



Überlege, was der jeweilige y-Achsenabschnitt ist.
Nicht vergessen: Für ist n der y-Achsenabschnitt, also die Stelle, an der die Gerade die y-Achse schneidet.
Überlege, ob die Steigung positiv oder negativ ist und wie stark die Steigung ist.
Nicht vergessen: Für ist m die Steigung der Geraden.


Aufgabe 6c): Finde Paare

Ordne den gegebenen linearen Gleichungen die zugehörige Gerade zu. Beachte: Nicht zu jeder Gleichung ist eine Gerade gegeben.



Überlege, was der jeweilige y-Achsenabschnitt ist.
Nicht vergessen: Für ist n der y-Achsenabschnitt, also die Stelle, an der die Gerade die y-Achse schneidet.
Überlege, ob die Steigung positiv oder negativ ist und wie stark die Steigung ist.
Nicht vergessen: Für ist m die Steigung der Geraden.