Gymnasium Marktbreit/Wissenschaftswoche 2024/11bMatheInfo: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Markierung: 2017-Quelltext-Bearbeitung
Zeile 6: Zeile 6:
|Weitere Hinweise =  
|Weitere Hinweise =  
|Bild=}}
|Bild=}}
=== Lineares Wachstum ===
=== Lineares Wachstum ===ref2
Eine Größe b nimmt absolut und konstant in einem zugehörigen Zeitabschnitt <math>A_{n}</math> zu oder ab. Die Differenzengleichung lautet: <math>A_{n+1}=A_{n}+b</math>
Eine Größe b nimmt absolut und konstant in einem zugehörigen Zeitabschnitt <math>A_{n}</math> zu oder ab. Die Differenzengleichung lautet: <math>A_{n+1}=A_{n}+b</math>



Version vom 2. Juli 2024, 08:13 Uhr

Wissenschaftswoche 2024
[[Bild:|250px]]
Forschungsfrage: Wie kann man mit Hilfe von Funktionen die Zukunft vorhersagen?

=== Lineares Wachstum ===ref2 Eine Größe b nimmt absolut und konstant in einem zugehörigen Zeitabschnitt zu oder ab. Die Differenzengleichung lautet:

Mit der Gleichung wird die Rekursion(Zu-/Abnahme einer Größe in einer bestimmten Zeit) explizit festgelegt. Im Unterricht wird statt dieser Formel oft die Formel y=m·x+t verwendet.

Graphisch wird das lineare Wachstum durch eine Gerade beschrieben. Lineares Wachstum istunbegrentzt, wenn ist.

Deshalb können in der Realität, nur Abschnitte verschiedene Vorgänge (beispielsweise das Wachstum von Pflanzen oder die Menge an Wasser, die aus einem Wasserhan kommt) näherungsweise beschrieben werden.

Exponentielles Wachstum

Bei biologischen Wachstumsprozessen ist die Zunahme

einer Größe zu Beginn oft proportional zum derzeitigen Bestand  

Beispiele: Bakterienwachstum, Wachstum durch

Zellteilung, Bevölkerungswachstum

Rekursionsformel/Differenzialgleichung:

mit als Wachstumsfaktor

und als Wachstumsrate, %

Lösung der Gleichung:

Exponential growth no name.svg

Logistische Modelle

KI zur Vorhersage

Blick in die Zukunft

Literaturverzeichnis

  1. Christoph Ableitinger: Biomathematische Modelle im Unterricht - Fachwissenschaftliche und didaktische Grundlagen und Unterrichtsmaterialien, S.32 ff. (2.1.2 Exponentielles Wachstum)
  2. Ableitinger, C., " Biomathematische Modelle im Unterricht",1.Auflage 2010, S.29ff