Abitur Physik am Gymnasium Trittau/Tunneleffekt: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
[[Abitur Physik am Gymnasium Trittau/Potentialtopf|Benötigtes Vorwissen]]
==== Beispiel / Veranschaulichung ====
==== Beispiel / Veranschaulichung ====
Ein Ball liegt in einer Kule zwischen zwei Hügeln. Um aus dieser Kule zu gelangen benötigt er genug Energie um über die Hügel zu gelangen. Die Spitzen der Hügel sind die beiden Potentialbarrieren. Wenn durch den Hügel ein Tunnel führt reicht bereits deutlich weniger oder sogar keine Energie aus um den Ball auf die andere Seite einer der Hügel und somit aus dem Loch zu befördern.
Ein Ball liegt in einer Kule zwischen zwei Hügeln. Um aus dieser Kule zu gelangen benötigt er genug Energie um über die Hügel zu gelangen. Die Spitzen der Hügel sind die beiden Potentialbarrieren. Wenn durch den Hügel ein Tunnel führt reicht bereits deutlich weniger oder sogar keine Energie aus um den Ball auf die andere Seite einer der Hügel und somit aus dem Loch zu befördern.


In der Quantenmechanik könnte man zwei Atomkerne betrachten. Die elektrische Kraft, welche bei beiden Positiv ist stellt die zu überwindende Potentialbarriere dar. Zum fusionieren benötigen die Kerne massig Energie wie Temperatur und Druck. Mit der Hilfe des Tunneleffekts ist dies in seltenen Fällen jedoch nicht von nöten.
In der Quantenmechanik könnte man zwei Atomkerne betrachten. Die elektrische Kraft, welche bei beiden Positiv ist stellt die zu überwindende Potentialbarriere dar. Zum fusionieren benötigen die Kerne massig Energie wie Temperatur und Druck. Mit der Hilfe des Tunneleffekts ist dies in seltenen Fällen jedoch nicht von Nöten.


==== Erklärung ====
==== Erklärung ====
Daher, dass die Aufenthaltswahrscheinlichkeit eines Quantenobjekts an keinem Ort null ist, kann sich das Teilchen auch außerhalb des Potentialtopfes befinden. Bei der Fusion von Wasserstoff zu Helium tritt der Tunneleffekt etwa bei einem Billiardstel (1 : 1.000.000.000.000.000.000) auf. Durch dieses Effekt beginnt das Wasserstoffbrennen eines Stern beispielsweise bereits bei der Hälfte der auf die Teilchen wirkenden Energie verglichen mit dem Theoriewert ohne den Tunneleffekt.
Daher, dass die Aufenthaltswahrscheinlichkeit eines Quantenobjekts an keinem Ort null ist, kann sich das Teilchen auch außerhalb des Potentialtopfes befinden. Bei der Fusion von Wasserstoff zu Helium tritt der Tunneleffekt etwa bei einem Billiardstel (1 : 1.000.000.000.000.000.000) auf. Durch dieses Effekt beginnt das Wasserstoffbrennen eines Stern beispielsweise bereits bei der Hälfte der auf die Teilchen wirkenden Energie verglichen mit dem Theoriewert ohne den Tunneleffekt.

Version vom 19. März 2024, 10:48 Uhr


Benötigtes Vorwissen

Beispiel / Veranschaulichung

Ein Ball liegt in einer Kule zwischen zwei Hügeln. Um aus dieser Kule zu gelangen benötigt er genug Energie um über die Hügel zu gelangen. Die Spitzen der Hügel sind die beiden Potentialbarrieren. Wenn durch den Hügel ein Tunnel führt reicht bereits deutlich weniger oder sogar keine Energie aus um den Ball auf die andere Seite einer der Hügel und somit aus dem Loch zu befördern.

In der Quantenmechanik könnte man zwei Atomkerne betrachten. Die elektrische Kraft, welche bei beiden Positiv ist stellt die zu überwindende Potentialbarriere dar. Zum fusionieren benötigen die Kerne massig Energie wie Temperatur und Druck. Mit der Hilfe des Tunneleffekts ist dies in seltenen Fällen jedoch nicht von Nöten.

Erklärung

Daher, dass die Aufenthaltswahrscheinlichkeit eines Quantenobjekts an keinem Ort null ist, kann sich das Teilchen auch außerhalb des Potentialtopfes befinden. Bei der Fusion von Wasserstoff zu Helium tritt der Tunneleffekt etwa bei einem Billiardstel (1 : 1.000.000.000.000.000.000) auf. Durch dieses Effekt beginnt das Wasserstoffbrennen eines Stern beispielsweise bereits bei der Hälfte der auf die Teilchen wirkenden Energie verglichen mit dem Theoriewert ohne den Tunneleffekt.