Benutzer:Buss-Haskert/Exponentialfunktion/Wachstum: Unterschied zwischen den Versionen
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 99: | Zeile 99: | ||
<br> | <br> | ||
{{Box|1=Lineares und exponentielles Wachstum|2=<div class="grid"> | {{Box|1=Lineares und exponentielles Wachstum|2=<div class="grid"> | ||
<div class="width-1-2">Lineares Wachstum: | <div class="width-1-2">'''Lineares Wachstum:''' | ||
W<sub>n</sub> = W<sub>0</sub> + d·n <br> | W<sub>n</sub> = W<sub>0</sub> + d·n <br> | ||
mit dem Anfangswert W<sub>0</sub> und der gleichmäßigen Zunahme d. | mit dem Anfangswert W<sub>0</sub> und der gleichmäßigen Zunahme d. | ||
</div> | </div> | ||
<div class="width-1-2">Exponentielles Wachstum<br> | <div class="width-1-2">'''Exponentielles Wachstum:'''<br> | ||
W<sub>n</sub> = W<sub>0</sub>·q<sup>n</sup><br> mit dem Anfangswert W<sub>0</sub> und dem Wachstumsfaktor q.</div> | W<sub>n</sub> = W<sub>0</sub>·q<sup>n</sup><br> mit dem Anfangswert W<sub>0</sub> und dem Wachstumsfaktor q.</div> | ||
</div>|3=Arbeitsmethode}} | </div>|3=Arbeitsmethode}} |
Version vom 22. Dezember 2021, 15:49 Uhr
·
Mögliche Antworten:
- Bevölkerungswachstum
- Bakterienwachstum
- Haarwachstum
- Druckzunahme je nach Meerestiefe
- Temperaturanstieg
- Sprunghöhe Flummi
- Zerfall von Bierschaum
- Kerzenhöhe je nach Dauer
- Lichtintensität
- Wertverlust bei Neuwagen
1 Lineares und exponentielles Wachstum
Sparmodell (vgl. Zinseszins) Erinnerung: Sparmodelle
1) Einstieg: Sparschwein
Sie lässt sich die Zinsen jedes Jahr auszahlen und spart sie in einem Sparschwein.
K = 1000€; p% = 5% = 0,05
Jahre | Guthaben(€) |
0 | 1000 |
1 | 1050 |
2 | 1100 |
3 | 1150 |
... | ... |
18 | ... |
Sie lässt die Zinsen auf dem Sparbuch und fügt sie so jährlich dem Kapital zu.
K = 1000€; p% = 5% = 0,05
Jahre | Guthaben(€) |
0 | 1000 |
1 | 1050 |
2 | 1102,50 |
3 | 1157,625 |
... | ... |
18 | ... |
Beispielrechnung mit p% = 2% = 0,02
Kannst du eine Formel angeben, mit der du den Endbetrag berechnen kannst?
K18 = ...
K18 = ...
nach Pöchtrager
Bezogen auf die Zinsrechnung:
Du nutzt folgende Taste beim Taschenrechner, um Exponenten größer als 3 einzugeben (hier z.B. n = 18):
Das nachfolgende Video erklärt noch einmal den Zusammenhang zwischen p% und q.
Bei diesem Kapitalwachstum handelt es sich um ein sogenanntes exponentielles Wachstum.
2 Wachstumsrate und Wachstumsfaktor
Beispiele
1) Die Schülerzahl einer Schule von 550 ist innerhalb eines Jahres um 8% gestiegen.
Geg: W0 = 550; Wachstumsrate p% = 8%
Ges: W1 ; q
Der alte Wert ist von 100% auf 108% gestiegen, also auf das 1,08-Fache.
Wachstumsfaktor q q = 1 + p%
Die neue Größe ergibt sich aus dem Produkt der alten Größe mit dem Wachstumsfaktor q:
W1 = W0 ∙ q
W1= 550 ∙ 1,08
= 594 (Schüler)
Die Anzahl der Schüler beträgt nun 594.
2) Die Anzahl der Schülerinnen und Schüler einer Schule stieg von 2017 bis 2018 von 540 auf 567. Bestimme die Wachstumsrate.
Geg: W0 = 540; W1 = 567
Ges: p% Wachstumsrate
Berechne die Wachstumsrate aus dem alten und neuen Wert:
Wachstumsrate: p% = = = 0,05 = 5%
Wachstumsfaktor: q = = = 1,05 (Formel W1 = W0 ∙ q nach q umgestellt)
oder q = 1 + 5% = 1 + 0,05 = 1,05 ( Probe: 440 ∙ 1,05 = 462)
IDEE LearningApp mit Anwendungsaufgaben zur Bestimmung von p% und q (noch erstellen!)
3 Exponentielles Wachstum
Prognose für das Jahr 2030: n = 11
W11 = W0 ∙ q11
= 7,70 ∙ 1,02511
Die Gleichung Wn = W0 · qn heißt Exponentialgleichung, da die Variable n im Exponenten steht.
ÜBUNGSAUFGABEN ERGÄNZEN
- Formel umstellen
- Verdopplungszeit (Bakterien)
Applet von Hegius, R. Schürz
- Halbwertszeit (Atome)
Applet von Hegius, R. Schürz
4 Die Exponentialfunktion
Applet von Ralf Wagner
Der Graph verläuft immer oberhalb der x-Achse.
Der Graph geht immer durch den Punkt (0|1).
Für a>1 steigt der Graph (Zunahme),