Benutzer:C.Schroer/Wurzeln: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 7: | Zeile 7: | ||
Das Ziehen der Quadratwurzel macht das Quadrieren ( hoch zwei) wieder rückgängig. Wegen dieses Zusammenhanges solltest du die Quadratzahlen gut auswendig können, um die Quadratwurzel im Kopf, ohne Taschenrechner, berechnen zu können. | Das Ziehen der Quadratwurzel macht das Quadrieren ( hoch zwei) wieder rückgängig. Wegen dieses Zusammenhanges solltest du die Quadratzahlen gut auswendig können, um die Quadratwurzel im Kopf, ohne Taschenrechner, berechnen zu können. | ||
{ | {| | ||
|+ Die Quadratzahlen 11² bis 25² und die daraus abgewandelte Quadrate | |+ Die Quadratzahlen 11² bis 25² und die daraus abgewandelte Quadrate | ||
! Vorgabe !! Abwandlung mit Nullen !! Abwandlung mit Nachkommastellen | ! Vorgabe !! Abwandlung mit Nullen !! Abwandlung mit Nachkommastellen | ||
|- | |- | ||
| 11² = 121 || 110² = 12100 || 0,11² = 0,0121 | | 11² = 121 || 110² = 12100 |4=| 0,11² = 0,0121 | ||
|- | |5=-| 12² = 144 |6=| 120² = 14400 |7=| 0,12² = 0,0144 | ||
| 12² = 144 || 120² = 14400 || 0,12² = 0,0144 | |8=-|9=|10=|11=}}} | ||
|- | |||
| | |||
<br />{{Box|Definition|Die Quadratwurzel <math>\sqrt{a}</math> aus einer nichtnegativen Zahl a (d.h. a <math>\geqslant</math>0) ist diejenige nichtnegative Zahl b, die mit sich selbst multipliziert a ergibt.|Merksatz}} | <br />{{Box|Definition|Die Quadratwurzel <math>\sqrt{a}</math> aus einer nichtnegativen Zahl a (d.h. a <math>\geqslant</math>0) ist diejenige nichtnegative Zahl b, die mit sich selbst multipliziert a ergibt.|Merksatz}} |
Version vom 21. Dezember 2020, 17:14 Uhr
Diese Seite befindet sich im Aufbau.
Allgemein bezeichnet das "Wurzelziehen" oder auch "Radizieren" in der Mathematik eine Umkehrung des Potenzieren. Radizieren deshalb, weil "Radix" die lateinische Bezeichnung für Wurzel ist.
Die Quadratwurzel
Das Ziehen der Quadratwurzel macht das Quadrieren ( hoch zwei) wieder rückgängig. Wegen dieses Zusammenhanges solltest du die Quadratzahlen gut auswendig können, um die Quadratwurzel im Kopf, ohne Taschenrechner, berechnen zu können.
Vorgabe | Abwandlung mit Nullen | Abwandlung mit Nachkommastellen | |
---|---|---|---|
11² = 121 | 4=| 0,11² = 0,0121 | 12² = 144 |6=| 120² = 14400 |7=| 0,12² = 0,0144 | 9=|10=|11=}}}
Rechnen mit QuadratwurzelnWurzelgesetzeAnwendungsaufgabenIrrationale Zahlen und IntervallschachtelungDie Kubikwurzel und weitere Wurzeln |