Benutzer:C.Schroer/Quadratische Funktionen untersuchen: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
(Text)
Zeile 19: Zeile 19:


===Die Normalform und was man an ihr ablesen kann.===
===Die Normalform und was man an ihr ablesen kann.===
An der Normalform '''f(x) = ax<sup>2</sup> + bx + c'''  kann man den Schnittpunkt mit der y-Achse  '''Sy (0| c)''' ablesen.
An der Normalform '''f(x) = ax<sup>2</sup> + bx + c'''  kann man den Schnittpunkt mit der y-Achse  '''Sy (0|c)''' ablesen.


===Scheitelpunktform in Normalform umwandeln mithilfe der binomischen Formeln===
===Scheitelpunktform in Normalform umwandeln mithilfe der binomischen Formeln===
Die Klammer  (x - d) <sup>2</sup>  kann man mithilfe der 1. oder 2. binomischen Formel auflösen, fasst man dann zusammen, erhält man die Normalform.
<u>Beispiel:</u>
4(x + 5) <sup>2</sup>              + 6
= 4(x<sup>2</sup> + 10x + 25) + 6    (Anwenden der 1. Binomischen Formel)
= 4x<sup>2</sup> + 40x + 100  + 6  (Distributivgesetz)
= 4x<sup>2</sup> + 40 x + 106          ("Aufräumen")


===Normalform in Scheitelpunktform umwandeln durch quadratische Ergänzung===
===Normalform in Scheitelpunktform umwandeln durch quadratische Ergänzung===

Version vom 8. Dezember 2020, 18:16 Uhr

Quadratische Funktionen untersuchen

Quadratische Funktionen erkennt man daran, dass die Funktionsgleichungen eine bestimmte Form haben, in der die Variable im Quadrat vorkommt. Graphen quadratischer Funktionen nennt man Parabeln. Sie sind immer gebogen und spiegelsymmetrisch. Ihren tiefsten/ höchsten Punkt nennt man Scheitelpunkt.

Man kann quadratische Funktionen in der Scheitelpunktform f(x) = a (x - d)2 + e und der Normalform f(x) = ax2 + bx + c darstellen.

Die Scheitelpunktform und was man an ihr ablesen kann.

An der Scheitelpunktform f(x) = a (x - d)2 + e kann man den Scheitelpunkt S (d| e) ablesen.

Merke

Der Faktor a heißt Streckungsfaktor des Graphens. Es gilt:

Ist a < 0, so ist die Parabel nach oben geöffnet. Ist a< 0, so ist die Parabel nach unten geöffnet.

Ist |a| < 1, so ist die Parabel gestaucht (weiter als die Normalparabel).

Ist |a| > 1, so ist die Parabel gestreckt ( enger als die Normalparabel


Die Normalform und was man an ihr ablesen kann.

An der Normalform f(x) = ax2 + bx + c kann man den Schnittpunkt mit der y-Achse Sy (0|c) ablesen.

Scheitelpunktform in Normalform umwandeln mithilfe der binomischen Formeln

Die Klammer (x - d) 2 kann man mithilfe der 1. oder 2. binomischen Formel auflösen, fasst man dann zusammen, erhält man die Normalform.

Beispiel:

4(x + 5) 2 + 6

= 4(x2 + 10x + 25) + 6 (Anwenden der 1. Binomischen Formel)

= 4x2 + 40x + 100 + 6 (Distributivgesetz)

= 4x2 + 40 x + 106 ("Aufräumen")

Normalform in Scheitelpunktform umwandeln durch quadratische Ergänzung

Funktionsgleichung aufstellen, wenn zwei oder drei Punkte gegeben sind

Der Scheitelpunkt und ein weiterer Punkt ist gegeben

Der Schnittpunkt mit der y-Achse P (0|c) und zwei weitere Punkte sind gegeben

Schnittpunkte mit den Koordinatenachsen bestimmen

Schnittpunkte mit der y-Achse

Schnittpunkte mit der x-Achse

Textaufgaben